Abstract:
A method may include: in a used metal turbomachine blade including a root including a shank, a platform coupled to the shank and an airfoil coupled to the platform, removing the airfoil, leaving a remaining base including the platform, the shank and the root. The method may also form a radially extending opening through the platform into the shank, and insert a ceramic shank nub extending from a ceramic airfoil into the radially extending opening of the remaining base. The ceramic airfoil is fixedly attached to the remaining base. The method allows reuse of the metal shank while providing the lower cooling requirements of a ceramic airfoil.
Abstract:
A gas turbine that includes a rotor blade that includes an airfoil. The airfoil may include non-integral base and top portions. The airfoil may include a pin connector connecting the top portion to the base portion. The pin connector may include: a tab extending from the top portion; a complimentary slot for receiving the tab formed in the base portion; an elongated pin cavity formed through an interior region of the airfoil, where the pin cavity intersects the slot to divide the pin cavity into first and second pin cavity segments; a tab aperture formed through the tab, where the tab aperture is positioned so align with the pin cavity upon the tab being received within the slot; and a locking pin that extends continuously through the first segment of the pin cavity, the tab aperture, and the second segment of the pin cavity.
Abstract:
The present embodiments set forth a blade including an airfoil, the airfoil including a tip cap, a pressure sidewall and a suction sidewall extending axially between corresponding leading and trailing edges and radially between the base and the tip cap. The blade, including the airfoil and base, being formed in at least two airfoil parts, each of the two airfoil parts including contacting edges engaging each other respective contacting edges, the contacting edges defining a joint for preloading each of the at least two parts with each other and with the base. The at least two airfoil parts forming the airfoil being retained to each other by an interference fit at the joint. The interference fit providing frictional damping of vibrations in the blade during blade operation.
Abstract:
A method may include: in a used metal turbomachine blade including a root including a shank, a platform coupled to the shank and an airfoil coupled to the platform, removing the airfoil, leaving a remaining base including the platform, the shank and the root. The method may also form a radially extending opening through the platform into the shank, and insert a ceramic shank nub extending from a ceramic airfoil into the radially extending opening of the remaining base. The ceramic airfoil is fixedly attached to the remaining base. The method allows reuse of the metal shank while providing the lower cooling requirements of a ceramic airfoil.
Abstract:
A method may include: in a used metal turbomachine blade including a root including a shank, a platform coupled to the shank and an airfoil coupled to the platform, removing the airfoil, leaving a remaining base including the platform, the shank and the root. The method may also form a radially extending opening through the platform into the shank, and insert a ceramic shank nub extending from a ceramic airfoil into the radially extending opening of the remaining base. The ceramic airfoil is fixedly attached to the remaining base. The method allows reuse of the metal shank while providing the lower cooling requirements of a ceramic airfoil.
Abstract:
The present embodiments set forth a blade including an airfoil, the airfoil including a tip cap, a pressure sidewall and a suction sidewall extending axially between corresponding leading and trailing edges and radially between the base and the tip cap. The blade, including the airfoil and base, being formed in at least two airfoil parts, each of the two airfoil parts including contacting edges engaging each other respective contacting edges, the contacting edges defining a joint for preloading each of the at least two parts with each other and with the base. The at least two airfoil parts forming the airfoil being retained to each other by an interference fit at the joint. The interference fit providing frictional damping of vibrations in the blade during blade operation.
Abstract:
A method may include: in a used metal turbomachine blade including a root including a shank, a platform coupled to the shank and an airfoil coupled to the platform, removing the airfoil, leaving a remaining base including the platform, the shank and the root. The method may also form a radially extending opening through the platform into the shank, and insert a ceramic shank nub extending from a ceramic airfoil into the radially extending opening of the remaining base. The ceramic airfoil is fixedly attached to the remaining base. The method allows reuse of the metal shank while providing the lower cooling requirements of a ceramic airfoil.
Abstract:
A system and method for controlling the performance of a gas turbine system is provided. A backflow margin pressure ratio for a component is determined. A modified backflow margin pressure ratio for the component is calculated based on the number of fired hours and starts. Bleed air along a first flow path is controlled based on the modified backflow margin pressure ratio.
Abstract:
A gas turbine that includes a rotor blade that includes an airfoil. The airfoil may include non-integral base and top portions. The airfoil may include a pin connector connecting the top portion to the base portion. The pin connector may include: a tab extending from the top portion; a complimentary slot for receiving the tab formed in the base portion; an elongated pin cavity formed through an interior region of the airfoil, where the pin cavity intersects the slot to divide the pin cavity into first and second pin cavity segments; a tab aperture formed through the tab, where the tab aperture is positioned so align with the pin cavity upon the tab being received within the slot; and a locking pin that extends continuously through the first segment of the pin cavity, the tab aperture, and the second segment of the pin cavity.
Abstract:
A system and method for controlling the performance of a gas turbine system is provided. A backflow margin pressure ratio for a component is determined. A modified backflow margin pressure ratio for the component is calculated based on the number of fired hours and starts. Bleed air along a first flow path is controlled based on the modified backflow margin pressure ratio.