Abstract:
A system includes an airfoil disposed inside an engine assembly that includes a pressure side and a suction side that are coupled together at a leading edge and a trailing edge. The airfoil extends a radial length away from a central axis of the engine assembly between a hub end and a tip end. The airfoil includes a sweep feature disposed at the leading edge that is shaped to alter the air inside the engine assembly. Altering the air inside the engine assembly reduces a surface unsteady pressure level on the airfoil. The system includes a fan frame assembly comprising an inner and outer surface. The hub end is coupled with the inner surface and the tip end is coupled with the outer surface. The airfoil is integrated with the fan frame assembly such that the airfoil increases a structural load supporting capability of the fan frame assembly.
Abstract:
Disclosed examples include a retrofit fan frame assembly, comprising: a leading edge adjustment component coupleable to an airfoil, the leading edge adjustment component of variable chord length, the variable chord length to increase and then decrease along a radial length from a hub end of the airfoil to an opposite tip end of the airfoil; and an attachment mechanism configured to couple the leading edge adjustment component to a leading edge of the airfoil.
Abstract:
Apparatus and method are provided for reducing acoustical noise when cooling a device, such as a lamp system. The apparatus includes at least a set of a first synthetic jet and a second synthetic jet. The first and second synthetic jets are responsive to respective actuating signals having a phase difference (e.g., 180°) between one another chosen to reduce acoustic noise produced by the first and second synthetic jets when cooling the device.
Abstract:
Apparatus and method are provided for reducing acoustical noise when cooling a device, such as a lamp system. The apparatus includes at least a set of a first synthetic jet and a second synthetic jet. The first and second synthetic jets are responsive to respective actuating signals having a phase difference (e.g., 180°) between one another chosen to reduce acoustic noise produced by the first and second synthetic jets when cooling the device.
Abstract:
Disclosed examples include an airfoil comprising: a pressure side and a suction side that are coupled together at a substantially radial trailing edge of the airfoil, wherein the substantially radial trailing edge is downstream from a leading edge, the leading edge including a sweep feature of a variable chord length, the variable chord length to include: a first increase in chord length and a decrease in chord length along a radial length from a hub end of the airfoil to an opposite tip end of the airfoil; and a second increase in chord length along the radial length from the hub end to the opposite tip end, the second increase different than the first increase.