摘要:
A micro-fluid ejection device, such as an inkjet printhead, includes a substrate, a heater chip on the substrate, a structure on the substrate for supplying ink to the heater chip and a nozzle plate on the heater chip. The heater chip has a plurality of electrically-activatable spaced apart heater elements that can be repetitively subjected to momentary electrical activation and deactivation so as to cause cyclical heating and cooling of ink in the heater chip resulting in repetitive ejection of drops of ink by the nozzle plate on the heater chip. The device also includes a thermal control system in the heater chip being self-managed by operation of a control loop defined by the thermal control system internally of the heater chip and substrate for sensing and limiting the variation of the temperature of the substrate during cyclical operation of the heater elements of the heater chip.
摘要:
An apparatus provides identification information related to at least one ink jet print head in an ink jet printer. The apparatus includes a printer controller for providing a first identification data string comprising n number of bits, at least one of which has a first state, and no more than n−1 number of which have a second state different from the first state. Coupled to the printer controller is a first ink jet print head having a first serial input shift register. The first serial input shift register has at least n number of bit positions for receiving the n number of bits of the first identification data string. The first ink jet print head also includes at least n number of first latches, each of which is coupled to a corresponding one of the n number of bit positions of the first shift register. The n number of first latches are for latching the n number of bits of the first identification data string from the n number of bit positions of the first shift register. A first identification line, which is coupled to a predetermined one of the first latches, provides to the printer controller one of the n number of bits from the first identification data string that is latched into the predetermined one of the first latches. Based upon whether the bit provided on the first identification line has a first or second state, the printer controller determines whether the first print head is of a first type.
摘要:
An n-bit serial shift register in an ink jet print head operates in a print mode or a test mode. When the shift register is operating in the print mode, n bits of print data are serially scanned into n number of bit registers and are then latched out to heater addressing logic circuitry in the print head to control a print operation. When the circuit is operating in the test mode, x bits of test point data from x number of test nodes in the print head are loaded in parallel into x number of the n number of bit registers, and are then serially scanned out to a test data output. In this manner, a single shift register may be used to scan in print data and scan out test data, thereby providing observability and controllability of the internal logic nodes of the print head while minimizing logic size and the number of input/output connections on the print head.
摘要:
An inkjet printer includes a printhead for ejecting ink onto a print medium. The printhead includes electrical and mechanical structure for controlling the ejection of the ink. The printhead includes an ink ejector chip having at least one active device, such as a transistor and the like. A guard ring substantially surrounds select active devices included on the chip. The guard ring tends to prevent latch-up when the chip operates to energize the ink. The chip is manufactured using a substrate devoid of an overlying epitaxial layer which tends to reduce the cost of manufacturing the chip.
摘要:
An ink jet printer includes a printhead control circuit that produces printhead command signals based on data signals provided by the printer. A power circuit actuates ink ejectors in response to the printhead command signals and includes a plurality of compensation circuits. Each ink ejector is associated with a single compensation circuit and each compensation circuit includes a number of switches connected in parallel with each other. Each switch in a single compensation circuit is connected to actuate a single ink ejector when the switch is turned on. The compensation circuits adjust their internal resistance by turning on more or less switches and thereby compensate for changing effective parasitic resistance of the power lines.
摘要:
An inkjet printhead heater chip has an integral voltage regulator that derives two output voltages from a single chip input voltage. One of the two output voltages powers control logic circuitry as the other powers FET drivers. Preferred output voltages include +3.3 volts for the control logic circuitry and +7.5 volts for the FET drivers. A Vgs of the FET is about +7.5 volts which enables a FET area width of about 400 microns. Outputs of the control logic circuitry provide input to the FET drivers. A resistive heater for ejecting ink couples between a drain of the FET and the chip input voltage. Voltage regulating capacitors exist on the heater chip in parallel with the input voltage and each of the output voltages. Preferred capacitors have a gate oxide and a polysilicon layer overlying a substrate. Inkjet printers for housing the printheads are also disclosed.
摘要:
An inkjet printhead heater chip has an ink via asymmetrically arranged in a reciprocating direction of inkjet printhead movement. The ink via has two sides and a longitudinal extent substantially parallel to a print medium advance direction. A column of fluid firing elements exists exclusively along a single side of the two sides. The heater chip and ink via each have a centroid and neither resides coincidentally with one another. Preferably, the heater chip centroid resides externally to a boundary of the ink via. In other aspects, the column of fluid firing elements can be a sole column or plural and may be centered in the reciprocating direction. The ink via can be a sole via or plural. The heater chip can be rectangular and the ink vias can be closer to either the long or short ends thereof. Inkjet printers for housing the printheads are also disclosed.
摘要:
A micro-miniature fluid ejecting device. The fluid ejecting device includes a semiconductor substrate having fluid ejectors formed on a surface of the substrate. A flexible circuit is fixedly attached to the semiconductor substrate. The flexible circuit has power contacts for providing power to the fluid ejectors. At least one drive circuit is connected to the fluid ejectors. The drive circuit is disposed on one of the semiconductor substrate and the flexible circuit. A fluid sequencer is connected to the drive circuit for selectively activating the fluid ejectors. The fluid sequencer is also disposed on one of the semiconductor substrate and the flexible circuit. The semiconductor substrate is attached to a housing. A fluid source is provided for supplying fluid to the semiconductor substrate for ejection by the fluid ejectors. The fluid ejecting device provides low cost construction for application specific miniature fluid jetting devices.
摘要:
A method of firing a plurality of jetting heaters in an ink jet printer includes identifying a first of the jetting heaters to be fired. A second of the jetting heaters to be fired immediately after the firing of the first jetting heater is also identified. Power is simultaneously applied to each of the first jetting heater and the second jetting heater.
摘要:
The invention provides a method for reducing ink corrosion of exposed metal layers on a chip surface of a semiconductor chip for an ink jet printhead. The method includes depositing a protective layer in a plasma process to the chip surface, the protective layer being deposited adjacent ink ejectors so that the protective layer substantially circumscribes an ink via in the chip. A thick film layer is applied to the protective layer and chip, whereby the protective layer and thick film layer are sufficient to promote increased adhesion between the thick film layer and a nozzle plate attached to the thick film layer thereby substantially reducing a tendency for the nozzle plate and thick film layer to delaminate from one another during printhead manufacture or use and interrupting contact between ink and the exposed metal layers on the chip surface.