摘要:
Methods and systems for syntactically indexing and searching data sets to achieve more accurate search results and for indexing and searching data sets using entity tags alone or in combination therewith are provided. Example embodiments provide a Syntactic Query Engine (“SQE”) that parses, indexes, and stores a data set, as well as processes natural language queries subsequently submitted against the data set. The SQE comprises a Query Preprocessor, a Data Set Preprocessor, a Query Builder, a Data Set Indexer, an Enhanced Natural Language Parser (“ENLP”), a data set repository, and, in some embodiments, a user interface. After preprocessing the data set, the SQE parses the data set according to a variety of levels of parsing and determines as appropriate the entity tags and syntactic and grammatical roles of each term to generate enhanced data representations for each object in the data set. The SQE indexes and stores these enhanced data representations in the data set repository. Upon subsequently receiving a query, the SQE parses the query also using a variety of parsing levels and searches the indexed stored data set to locate data that contains similar terms used in similar grammatical roles and/or with similar entity tag types as indicated by the query. In this manner, the SQE is able to achieve more contextually accurate search results more frequently than using traditional search engines.
摘要:
Methods and systems for extending keyword searching techniques to syntactically and semantically annotated data are provided. Example embodiments provide a Syntactic Query Engine (“SQE”) that parses, indexes, and stores a data set as an enhanced document index with document terms as well as information pertaining to the grammatical roles of the terms and ontological and other semantic information. In one embodiment, the enhanced document index is a form of term-clause index, that indexes terms and syntactic and semantic annotations at the clause level. The enhanced document index permits the use of a traditional keyword search engine to process relationship queries as well as to process standard document level keyword searches. In one embodiment, the SQE comprises a Query Processor, a Data Set Preprocessor, a Keyword Search Engine, a Data Set Indexer, an Enhanced Natural Language Parser (“ENLP”), a data set repository, and, in some embodiments, a user interface or an application programming interface.
摘要:
Methods and systems for extending keyword searching techniques to syntactically and semantically annotated data are provided. Example embodiments provide a Syntactic Query Engine (“SQE”) that parses, indexes, and stores a data set as an enhanced document index with document terms as well as information pertaining to the grammatical roles of the terms and ontological and other semantic information. In one embodiment, the enhanced document index is a form of term-clause index, that indexes terms and syntactic and semantic annotations at the clause level. The enhanced document index permits the use of a traditional keyword search engine to process relationship queries as well as to process standard document level keyword searches. In one embodiment, the SQE comprises a Query Processor, a Data Set Preprocessor, a Keyword Search Engine, a Data Set Indexer, an Enhanced Natural Language Parser (“ENLP”), a data set repository, and, in some embodiments, a user interface or an application programming interface.
摘要:
Methods and systems for extending keyword searching techniques to syntactically and semantically annotated data are provided. Example embodiments provide a Syntactic Query Engine (“SQE”) that parses, indexes, and stores a data set as an enhanced document index with document terms as well as information pertaining to the grammatical roles of the terms and ontological and other semantic information. In one embodiment, the enhanced document index is a form of term-clause index, that indexes terms and syntactic and semantic annotations at the clause level. The enhanced document index permits the use of a traditional keyword search engine to process relationship queries as well as to process standard document level keyword searches. In one embodiment, the SQE comprises a Query Processor, a Data Set Preprocessor, a Keyword Search Engine, a Data Set Indexer, an Enhanced Natural Language Parser (“ENLP”), a data set repository, and, in some embodiments, a user interface or an application programming interface.
摘要:
Methods and systems for extending keyword searching techniques to syntactically and semantically annotated data are provided. Example embodiments provide a Syntactic Query Engine (“SQE”) that parses, indexes, and stores a data set as an enhanced document index with document terms as well as information pertaining to the grammatical roles of the terms and ontological and other semantic information. In one embodiment, the enhanced document index is a form of term-clause index, that indexes terms and syntactic and semantic annotations at the clause level. The enhanced document index permits the use of a traditional keyword search engine to process relationship queries as well as to process standard document level keyword searches. In one embodiment, the SQE comprises a Query Processor, a Data Set Preprocessor, a Keyword Search Engine, a Data Set Indexer, an Enhanced Natural Language Parser (“ENLP”), a data set repository, and, in some embodiments, a user interface or an application programming interface.
摘要:
Methods and systems for extending keyword searching techniques to syntactically and semantically annotated data are provided. Example embodiments provide a Syntactic Query Engine (“SQE”) that parses, indexes, and stores a data set as an enhanced document index with document terms as well as information pertaining to the grammatical roles of the terms and ontological and other semantic information. In one embodiment, the enhanced document index is a form of term-clause index, that indexes terms and syntactic and semantic annotations at the clause level. The enhanced document index permits the use of a traditional keyword search engine to process relationship queries as well as to process standard document level keyword searches. In one embodiment, the SQE comprises a Query Processor, a Data Set Preprocessor, a Keyword Search Engine, a Data Set Indexer, an Enhanced Natural Language Parser (“ENLP”), a data set repository, and, in some embodiments, a user interface or an application programming interface.
摘要:
Methods and systems for extending keyword searching techniques to syntactically and semantically annotated data are provided. Example embodiments provide a Syntactic Query Engine (“SQE”) that parses, indexes, and stores a data set as an enhanced document index with document terms as well as information pertaining to the grammatical roles of the terms and ontological and other semantic information. In one embodiment, the enhanced document index is a form of term-clause index, that indexes terms and syntactic and semantic annotations at the clause level. The enhanced document index permits the use of a traditional keyword search engine to process relationship queries as well as to process standard document level keyword searches.
摘要:
Methods and systems for syntactically indexing and searching data sets to achieve more accurate search results are provided. Example embodiments provide a Syntactic Query Engine (“SQE”) that parses, indexes, and stores a data set, as well as processes natural language queries subsequently submitted against the data set. The SQE comprises a Query Preprocessor, a Data Set Preprocessor, a Query Builder, a Data Set Indexer, an Enhanced Natural Language Parser (“ENLP”), a data set repository, and, in some embodiments, a user interface. After preprocessing the data set, the SQE parses the data set and determines the syntactic and grammatical roles of each term to generate enhanced data representations for each object in the data set. The SQE indexes and stores these enhanced data representations in the data set repository. Upon subsequently receiving a query, the SQE parses the query similarly and searches the indexed stored data set to locate data that contains similar terms used in similar grammatical roles. In this manner, the SQE is able to achieve more contextually accurate search results more frequently than using traditional search engines.
摘要:
Methods and systems for extending keyword searching techniques to syntactically and semantically annotated data are provided. Example embodiments provide a Syntactic Query Engine (“SQE”) that parses, indexes, and stores a data set as an enhanced document index with document terms as well as information pertaining to the grammatical roles of the terms and ontological and other semantic information. In one embodiment, the enhanced document index is a form of term-clause index, that indexes terms and syntactic and semantic annotations at the clause level. The enhanced document index permits the use of a traditional keyword search engine to process relationship queries as well as to process standard document level keyword searches. In one embodiment, the SQE comprises a Query Processor, a Data Set Preprocessor, a Keyword Search Engine, a Data Set Indexer, an Enhanced Natural Language Parser (“ENLP”), a data set repository, and, in some embodiments, a user interface or an application programming interface.
摘要:
Methods and systems for entity recognition and disambiguation using natural language processing techniques are provided. Example embodiments provide an entity recognition and disambiguation system (ERDS) and process that, based upon input of a text segment, automatically determines which entities are being referred to by the text using both natural language processing techniques and analysis of information gleaned from contextual data in the surrounding text. In at least some embodiments, supplemental or related information that can be used to assist in the recognition and/or disambiguation process can be retrieved from knowledge repositories such as an ontology knowledge base. In one embodiment, the ERDS comprises a linguistic analysis engine, a knowledge analysis engine, and a disambiguation engine that cooperate to identify candidate entities from a knowledge repository and determine which of the candidates best matches the one or more detected entities in a text segment using context information.