-
公开(公告)号:US20150169611A1
公开(公告)日:2015-06-18
申请号:US14526612
申请日:2014-10-29
Applicant: Google Inc.
Inventor: James William Philbin , Anand Pillai , John Flynn , Hartwig Adam
IPC: G06F17/30
CPC classification number: G06F17/30153 , G06F17/30247 , G06F17/30256 , G06F17/30864
Abstract: Systems and methods for a dynamic visual search engine are provided. In one example method, a criteria used to partition a set of compressed image descriptors into multiple database shards may be determined. Additionally, a size of a dynamic index may be determined. The dynamic index may represent a dynamic number of images and may be configured to accept insertion of reference images into the dynamic index that can be search against immediately. According to the method, an instruction to merge the uncompressed image descriptors of the dynamic index into the database shards of the compressed image descriptors may be received, and the uncompressed image descriptors of the dynamic index may be responsively merged into the database shards of the compressed image descriptors based on the criteria.
Abstract translation: 提供了动态视觉搜索引擎的系统和方法。 在一个示例性方法中,可以确定用于将一组压缩图像描述符分割成多个数据库分片的标准。 另外,可以确定动态索引的大小。 动态索引可以表示动态数量的图像,并且可以被配置为接受将参考图像插入到可以立即搜索的动态索引中。 根据该方法,可以接收将动态索引的未压缩图像描述符合并到压缩图像描述符的数据库碎片中的指令,并且动态索引的未压缩图像描述符可以被响应地合并到压缩的图像描述符的数据库碎片中 基于标准的图像描述符。
-
公开(公告)号:US09442950B2
公开(公告)日:2016-09-13
申请号:US14526612
申请日:2014-10-29
Applicant: Google Inc.
Inventor: James William Philbin , Anand Pillai , John Flynn , Hartwig Adam
IPC: G06F17/30
CPC classification number: G06F17/30153 , G06F17/30247 , G06F17/30256 , G06F17/30864
Abstract: Systems and methods for a dynamic visual search engine are provided. In one example method, a criteria used to partition a set of compressed image descriptors into multiple database shards may be determined. Additionally, a size of a dynamic index may be determined. The dynamic index may represent a dynamic number of images and may be configured to accept insertion of reference images into the dynamic index that can be search against immediately. According to the method, an instruction to merge the uncompressed image descriptors of the dynamic index into the database shards of the compressed image descriptors may be received, and the uncompressed image descriptors of the dynamic index may be responsively merged into the database shards of the compressed image descriptors based on the criteria.
Abstract translation: 提供了动态视觉搜索引擎的系统和方法。 在一个示例性方法中,可以确定用于将一组压缩图像描述符分割成多个数据库分片的标准。 另外,可以确定动态索引的大小。 动态索引可以表示动态数量的图像,并且可以被配置为接受将参考图像插入到可以立即搜索的动态索引中。 根据该方法,可以接收将动态索引的未压缩图像描述符合并到压缩图像描述符的数据库碎片中的指令,并且动态索引的未压缩图像描述符可以被响应地合并到压缩的图像描述符的数据库碎片中 基于标准的图像描述符。
-
公开(公告)号:US20180053042A1
公开(公告)日:2018-02-22
申请号:US15798074
申请日:2017-10-30
Applicant: Google Inc.
Inventor: James William Philbin , Gerhard Florian Schroff , Dmitry Kalenichenko
CPC classification number: G06K9/00288 , G06K9/4619 , G06K9/6218 , G06K9/6256 , G06K9/6267 , G06K9/66 , G06N3/0454 , G06N3/08 , G06N3/084 , G06T2207/20081 , G06T2207/20084
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating numeric embeddings of images. One of the methods includes obtaining training images; generating a plurality of triplets of training images; and training a neural network on each of the triplets to determine trained values of a plurality of parameters of the neural network, wherein training the neural network comprises, for each of the triplets: processing the anchor image in the triplet using the neural network to generate a numeric embedding of the anchor image; processing the positive image in the triplet using the neural network to generate a numeric embedding of the positive image; processing the negative image in the triplet using the neural network to generate a numeric embedding of the negative image; computing a triplet loss; and adjusting the current values of the parameters of the neural network using the triplet loss.
-
公开(公告)号:US09836641B2
公开(公告)日:2017-12-05
申请号:US14972670
申请日:2015-12-17
Applicant: Google Inc.
Inventor: James William Philbin , Gerhard Florian Schroff , Dmitry Kalenichenko
CPC classification number: G06K9/00288 , G06K9/4619 , G06K9/6218 , G06K9/6256 , G06K9/6267 , G06K9/66 , G06N3/0454 , G06N3/08 , G06N3/084 , G06T2207/20081 , G06T2207/20084
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating numeric embeddings of images. One of the methods includes obtaining training images; generating a plurality of triplets of training images; and training a neural network on each of the triplets to determine trained values of a plurality of parameters of the neural network, wherein training the neural network comprises, for each of the triplets: processing the anchor image in the triplet using the neural network to generate a numeric embedding of the anchor image; processing the positive image in the triplet using the neural network to generate a numeric embedding of the positive image; processing the negative image in the triplet using the neural network to generate a numeric embedding of the negative image; computing a triplet loss; and adjusting the current values of the parameters of the neural network using the triplet loss.
-
公开(公告)号:US20160180151A1
公开(公告)日:2016-06-23
申请号:US14972670
申请日:2015-12-17
Applicant: Google Inc.
Inventor: James William Philbin , Gerhard Florian Schroff , Dmitry Kalenichenko
CPC classification number: G06K9/00288 , G06K9/4619 , G06K9/6218 , G06K9/6256 , G06K9/6267 , G06K9/66 , G06N3/0454 , G06N3/08 , G06N3/084 , G06T2207/20081 , G06T2207/20084
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating numeric embeddings of images. One of the methods includes obtaining training images; generating a plurality of triplets of training images; and training a neural network on each of the triplets to determine trained values of a plurality of parameters of the neural network, wherein training the neural network comprises, for each of the triplets: processing the anchor image in the triplet using the neural network to generate a numeric embedding of the anchor image; processing the positive image in the triplet using the neural network to generate a numeric embedding of the positive image; processing the negative image in the triplet using the neural network to generate a numeric embedding of the negative image; computing a triplet loss; and adjusting the current values of the parameters of the neural network using the triplet loss.
Abstract translation: 方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于生成图像的数字嵌入。 其中一种方法包括获取训练图像; 产生训练图像的多个三元组; 并训练每个三元组上的神经网络以确定神经网络的多个参数的训练值,其中对于每个三元组训练神经网络包括:使用神经网络来处理三元组中的锚图像以产生 锚图像的数字嵌入; 使用神经网络处理三重态中的正像,以生成正像的数字嵌入; 使用神经网络处理三联体中的负图像以生成负图像的数字嵌入; 计算三元损失; 并使用三元组损失调整神经网络的参数的当前值。
-
-
-
-