Sub-query evaluation for image search
    1.
    发明授权
    Sub-query evaluation for image search 有权
    图像搜索的子查询评估

    公开(公告)号:US09152652B2

    公开(公告)日:2015-10-06

    申请号:US13828254

    申请日:2013-03-14

    Applicant: Google Inc.

    CPC classification number: G06F17/30244

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for identifying images responsive to a search phrase are disclosed. In one aspect, a method includes identifying a set of responsive images for a search phrase that includes two or more terms. Interaction rankings are determined for images in the set of responsive images. Two or more sub-queries are created based on the search phrase. Sub-query model rankings are determined for images in the set of responsive images. A search phrase score is determined for the image relevance model. Based on the search phrase scores for the sub-queries, one of the sub-query models is selected as a model for the search phrase.

    Abstract translation: 公开了方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于方法,系统和装置,包括编码在计算机存储介质上的计算机程序,用于响应于搜索短语识别图像。 一方面,一种方法包括识别包括两个或多个术语的搜索短语的一组响应图像。 确定响应图像集中的图像的相互作用排名。 基于搜索短语创建两个或多个子查询。 确定响应图像集中的图像的子查询模型排名。 确定图像相关性模型的搜索短语得分。 基于子查询的搜索短语分数,选择一个子查询模型作为搜索短语的模型。

    Sub-Query Evaluation for Image Search
    2.
    发明申请
    Sub-Query Evaluation for Image Search 有权
    图像搜索的子查询评估

    公开(公告)号:US20150169631A1

    公开(公告)日:2015-06-18

    申请号:US13828254

    申请日:2013-03-14

    Applicant: Google Inc.

    CPC classification number: G06F17/30244

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for identifying images responsive to a search phrase are disclosed. In one aspect, a method includes identifying a set of responsive images for a search phrase that includes two or more terms. Interaction rankings are determined for images in the set of responsive images. Two or more sub-queries are created based on the search phrase. Sub-query model rankings are determined for images in the set of responsive images. A search phrase score is determined for the image relevance model. Based on the search phrase scores for the sub-queries, one of the sub-query models is selected as a model for the search phrase.

    Abstract translation: 公开了方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于方法,系统和装置,包括编码在计算机存储介质上的计算机程序,用于响应于搜索短语识别图像。 一方面,一种方法包括识别包括两个或多个术语的搜索短语的一组响应图像。 确定响应图像集中的图像的相互作用排名。 基于搜索短语创建两个或多个子查询。 确定响应图像集中的图像的子查询模型排名。 确定图像相关性模型的搜索短语得分。 基于子查询的搜索短语分数,选择一个子查询模型作为搜索短语的模型。

    Image classification
    3.
    发明授权
    Image classification 有权
    图像分类

    公开(公告)号:US08903182B1

    公开(公告)日:2014-12-02

    申请号:US13666083

    申请日:2012-11-01

    Applicant: Google Inc.

    CPC classification number: G06F17/30247

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for classifying images. In one aspect, a method includes receiving training samples for a particular data dimension. Each training sample specifies a training value for the data dimension and a measure of relevance between the training sample and a phrase. A value range is determined for the data dimension. The value range is segmented into two or more segments. A predictive model is trained for each segment. The predictive model for each segment is trained to predict an output based on an input value that is within the segment. A classification sample specifying an input value is received. A classification output is computed based on the input value, the predictive model for the segment in which the input value is included, and the predictive model for an adjacent segment.

    Abstract translation: 方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于分类图像。 一方面,一种方法包括接收特定数据维度的训练样本。 每个训练样本指定数据维度的训练值和训练样本与短语之间的相关性度量。 确定数据维度的值范围。 值范围分为两个或多个段。 对每个细分受训的预测模型。 对每个段的预测模型进行训练,以基于段内的输入值来预测输出。 接收指定输入值的分类样本。 基于输入值,包含输入值的段的预测模型和相邻段的预测模型来计算分类输出。

    Query image model
    4.
    发明授权
    Query image model 有权
    查询图像模型

    公开(公告)号:US09218366B1

    公开(公告)日:2015-12-22

    申请号:US14145100

    申请日:2013-12-31

    Applicant: Google Inc.

    CPC classification number: G06F17/30247 G06F17/30256

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating a query image model. In one aspect, a method includes receiving a set of images determined to be responsive to a query and ranked according to a first order; determining a positive image signature from a first subset of images selected from images ranked highest in the first order, determining a negative image signature from a second subset of images selected from images ranked lowest in the first order, determining a query image signature for the query based on a difference of the positive image signature and the negative image signature; and applying the query image signature to each image in the set of images to rank the images according to a second order that is different from the first order.

    Abstract translation: 方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于生成查询图像模型。 一方面,一种方法包括接收确定为响应于查询并根据第一顺序进行排序的图像集合; 从根据所述第一顺序排列最高的图像的第一图像子集确定正图像签名,从选自所述第一顺序最低的图像的第二图像子集确定负图像签名,确定所述查询的查询图像签名 基于正图像签名和负图像签名的差异; 以及将所述查询图像签名应用于所述图像集合中的每个图像,以根据与所述第一顺序不同的第二顺序来对所述图像进行排序。

    ONLINE IMAGE ANALYSIS
    5.
    发明申请
    ONLINE IMAGE ANALYSIS 审中-公开
    在线图像分析

    公开(公告)号:US20150169754A1

    公开(公告)日:2015-06-18

    申请号:US13780848

    申请日:2013-02-28

    Applicant: Google Inc.

    CPC classification number: G06F17/30256

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for analyzing image search result relevance. In one aspect, a method includes receiving result data specifying a search query and responsive image search results that reference images that are responsive to the search query. A determination is made that the search query matches an indexed query. An image relevance model is identified for the indexed query. The image relevance model can output a relevance score adjustment factor for an image search result based on image feature values of the image that is referenced by the search result. A relevance score adjustment factor is determined for each image search result using the identified image relevance model. A relevance score for each image search result is adjusted using the image's image relevance score adjustment factor. The images are ranked based on the adjusted relevance scores.

    Abstract translation: 方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于分析图像搜索结果相关性。 一方面,一种方法包括接收指定搜索查询的结果数据和引用响应于搜索查询的图像的响应图像搜索结果。 确定搜索查询与索引查询匹配。 为索引查询识别图像相关性模型。 图像相关性模型可以基于由搜索结果引用的图像的图像特征值输出图像搜索结果的相关性分数调整因子。 使用所识别的图像相关性模型,针对每个图像搜索结果确定相关性得分调整因子。 使用图像的图像相关性得分调整因子来调整每个图像搜索结果的相关性分数。 图像根据调整的相关性分数进行排名。

Patent Agency Ranking