Abstract:
Trackpad apparatus and computing devices including trackpad apparatus are disclosed. In an example implementation, a trackpad apparatus includes a capacitive touch-sensing pattern disposed on a top surface of the trackpad apparatus and a capacitive pressure-sensing pattern disposed below the capacitive touch-sensing pattern. The trackpad apparatus also includes at least one controller. The at least one controller and the capacitive touch-sensing pattern are collectively configured to detect location-specific reductions in charge coupling in the capacitive touch-sensing pattern resulting from charge being shunted out of the capacitive touch-sensing pattern by one or more electrically conductive objects being placed in electrical contact with the top surface of the trackpad apparatus. In the example trackpad apparatus, the at least one controller and the capacitive pressure-sensing pattern are collectively configured to detect location-specific changes in charge coupling in the capacitive pressure-sensing pattern resulting from pressure being applied to the top surface of the trackpad apparatus.
Abstract:
In an example implementation, a portable computing device may alternate between scanning for tactile input, such as a user's finger on a trackpad, and scanning for wireless input, such as a near field communication (NFC) signal. If tactile input is received, the portable computing device may stop scanning for wireless input while the portable computing device continues to receive the tactile input. When the portable computing device stops receiving the tactile input, the portable computing device may return to alternating between scanning for tactile input and scanning for wireless input. If wireless input is received, the portable computing device may stop scanning for tactile input while wirelessly communicating with the device from which the wireless input was received. When the portable computing device is finished wirelessly communicating with the device, the portable computing device may return to alternating between scanning for tactile input and scanning for wireless input.
Abstract:
Trackpad apparatus and computing devices including trackpad apparatus are disclosed. In an example implementation, a trackpad apparatus includes a capacitive touch-sensing pattern disposed on a top surface of the trackpad apparatus and a capacitive pressure-sensing pattern disposed below the capacitive touch-sensing pattern. The trackpad apparatus also includes at least one controller. The at least one controller and the capacitive touch-sensing pattern are collectively configured to detect location-specific reductions in charge coupling in the capacitive touch-sensing pattern resulting from charge being shunted out of the capacitive touch-sensing pattern by one or more electrically conductive objects being placed in electrical contact with the top surface of the trackpad apparatus. In the example trackpad apparatus, the at least one controller and the capacitive pressure-sensing pattern are collectively configured to detect location-specific changes in charge coupling in the capacitive pressure-sensing pattern resulting from pressure being applied to the top surface of the trackpad apparatus.
Abstract:
In an example implementation, a portable computing device may alternate between scanning for tactile input, such as a user's finger on a trackpad, and scanning for wireless input, such as a near field communication (NFC) signal. If tactile input is received, the portable computing device may stop scanning for wireless input while the portable computing device continues to receive the tactile input. When the portable computing device stops receiving the tactile input, the portable computing device may return to alternating between scanning for tactile input and scanning for wireless input. If wireless input is received, the portable computing device may stop scanning for tactile input while wirelessly communicating with the device from which the wireless input was received. When the portable computing device is finished wirelessly communicating with the device, the portable computing device may return to alternating between scanning for tactile input and scanning for wireless input.