Abstract:
An imaging device includes an image sensor and an array of wafer lenses. The image sensor has rows and columns of pixels partitioned into an array of sensor subsections. The array of wafer lenses is disposed over the image sensor. Each of the wafer lenses in the array of wafer lenses is optically positioned to focus image light onto a corresponding sensor subsection in the array of sensor subsections. Each sensor subsection includes unlit pixels that do not receive the image light focused from the wafer lenses and each sensor subsection also includes lit pixels that receive image the image light focused by the wafer lenses. A rectangular subset of the lit pixels from each sensor subsection are arranged to capture images.
Abstract:
An electronic device can include a first image sensor configured to capture a first image of a field of view and a second image sensor configured to capture a second image of the field of view. The electronic device can include a color filter adjacent to the second image sensor such that the field of view is viewable by the second image sensor through the color filter. The first image can have a first pixel resolution. The second image can have a second pixel resolution. The electronic device can include a controller configured to determine a third image based on luminance content of the first image and color content of the second image. The third image can have a third pixel resolution indicative of a spatial resolution of the first image and a spectral resolution of the second image.
Abstract:
An electronic device can include a first image sensor configured to capture a first image of a field of view and a second image sensor configured to capture a second image of the field of view. The electronic device can include a color filter adjacent to the second image sensor such that the field of view is viewable by the second image sensor through the color filter. The first image can have a first pixel resolution. The second image can have a second pixel resolution. The electronic device can include a controller configured to determine a third image based on luminance content of the first image and color content of the second image. The third image can have a third pixel resolution indicative of a spatial resolution of the first image and a spectral resolution of the second image.
Abstract:
An imaging device includes an image sensor and an array of wafer lenses. The image sensor has rows and columns of pixels partitioned into an array of sensor subsections. The array of wafer lenses is disposed over the image sensor. Each of the wafer lenses in the array of wafer lenses is optically positioned to focus image light onto a corresponding sensor subsection in the array of sensor subsections. Each sensor subsection includes unlit pixels that do not receive the image light focused from the wafer lenses and each sensor subsection also includes lit pixels that receive image the image light focused by the wafer lenses. A rectangular subset of the lit pixels from each sensor subsection are arranged to capture images.
Abstract:
Exemplary methods and systems provide for eye-tracking. An exemplary method may involve: causing a projection of a beam of light onto an eye and receiving data regarding a reflection of light from the beam of light off of the eye. The method further includes correlating a pupil of the eye with a darkest region from the data. The darkest region comprises a region that is darker relative to other regions of the reflection data. Once the pupil has been correlated and the pupil location is known, the method includes executing instructions to follow the pupil as the eye moves.