Principal component analysis based seed generation for clustering analysis
    1.
    发明授权
    Principal component analysis based seed generation for clustering analysis 有权
    基于主成分分析的种子生成用于聚类分析

    公开(公告)号:US08660370B1

    公开(公告)日:2014-02-25

    申请号:US13755373

    申请日:2013-01-31

    Applicant: Google Inc.

    CPC classification number: G06K9/6247 G06K9/6223

    Abstract: Clustering algorithms such as k-means clustering algorithm are used in applications that process entities with spatial and/or temporal characteristics, for example, media objects representing audio, video, or graphical data. Feature vectors representing characteristics of the entities are partitioned using clustering methods that produce results sensitive to an initial set of cluster seeds. The set of initial cluster seeds is generated using principal component analysis of either the complete feature vector set or a subset thereof. The feature vector set is divided into a desired number of initial clusters and a seed determined from each initial cluster.

    Abstract translation: 诸如k均值聚类算法的聚类算法被用于处理具有空间和/或时间特征的实体的应用中,例如表示音频,视频或图形数据的媒体对象。 使用产生对初始集群种子集合敏感的结果的聚类方法对代表实体特征的特征向量进行分区。 使用完整特征向量集或其子集的主成分分析来生成初始簇种子集合。 特征向量集合被分为期望数量的初始簇和从每个初始簇确定的种子。

Patent Agency Ranking