Abstract:
Disclosed herein are methods and apparatuses for compressing a video signal. In one embodiment, the method includes storing a function derived from a set of human ratings in a memory, identifying within at least a portion of the video signal at least one content-based feature, inputting the at least one identified content-based feature into the stored function, determining a compression ratio based on the function using a processor and generating a compressed video signal at the determined compression ratio.
Abstract:
A relative quality score is provided that takes into account properties of an encoded version of a source video. For example, one such quality score calculates a difference of higher and lower quality transcoded versions of the source video, and computes quality metrics for each to evaluate how similar the transcoded versions are to the source video. A relative quality score quantifying the quality improvement of the high-quality version over the low-quality version is computed. The relative quality score is adjusted based on a measurement of the quality of the source video. If the relative quality score for the video indicates a sufficient quality improvement of the high-quality version over the low-quality version, various actions are taken, such as retaining the high-quality version, and making the high-quality version available to users, e.g. via a video viewing user interface.