DISTANCE-BASED LEARNING CONFIDENCE MODEL

    公开(公告)号:US20230120894A1

    公开(公告)日:2023-04-20

    申请号:US18045722

    申请日:2022-10-11

    Applicant: Google LLC

    Abstract: A method includes receiving a training data set including a plurality of training data subsets. From two or more training data subsets in the training data set, the method includes selecting a support set of training examples and a query set of training examples. The method includes determining, using the classification model, a centroid value for each respective class. For each training example in the query set of training examples, the method includes generating, using the classification model, a query encoding, determining a class distance measure, determining a ground-truth distance, and updating parameters of the classification model. For each training example in the query set of training examples identified as being misclassified, the method further includes generating a standard deviation value, sampling a new query, and updating parameters of the confidence model based on the new query encoding.

    DISTANCE-BASED LEARNING CONFIDENCE MODEL

    公开(公告)号:US20210279517A1

    公开(公告)日:2021-09-09

    申请号:US17031144

    申请日:2020-09-24

    Applicant: Google LLC

    Abstract: A method for jointly training a classification model and a confidence model. The method includes receiving a training data set including a plurality of training data subsets. From two or more training data subsets in the training data set, the method includes selecting a support set of training examples and a query set of training examples. The method includes determining, using the classification model, a centroid value for each respective class. For each training example in the query set of training examples, the method includes generating, using the classification model, a query encoding, determining a class distance measure, determining a ground-truth distance, and updating parameters of the classification model. For each training example in the query set of training examples identified as being misclassified, the method further includes generating a standard deviation value, sampling a new query, and updating parameters of the confidence model based on the new query encoding.

    Distance-based learning confidence model

    公开(公告)号:US12039443B2

    公开(公告)日:2024-07-16

    申请号:US18045722

    申请日:2022-10-11

    Applicant: Google LLC

    Abstract: A method includes receiving a training data set including a plurality of training data subsets. From two or more training data subsets in the training data set, the method includes selecting a support set of training examples and a query set of training examples. The method includes determining, using the classification model, a centroid value for each respective class. For each training example in the query set of training examples, the method includes generating, using the classification model, a query encoding, determining a class distance measure, determining a ground-truth distance, and updating parameters of the classification model. For each training example in the query set of training examples identified as being misclassified, the method further includes generating a standard deviation value, sampling a new query, and updating parameters of the confidence model based on the new query encoding.

    Distance-based learning confidence model

    公开(公告)号:US11487970B2

    公开(公告)日:2022-11-01

    申请号:US17031144

    申请日:2020-09-24

    Applicant: Google LLC

    Abstract: A method for jointly training a classification model and a confidence model. The method includes receiving a training data set including a plurality of training data subsets. From two or more training data subsets in the training data set, the method includes selecting a support set of training examples and a query set of training examples. The method includes determining, using the classification model, a centroid value for each respective class. For each training example in the query set of training examples, the method includes generating, using the classification model, a query encoding, determining a class distance measure, determining a ground-truth distance, and updating parameters of the classification model. For each training example in the query set of training examples identified as being misclassified, the method further includes generating a standard deviation value, sampling a new query, and updating parameters of the confidence model based on the new query encoding.

Patent Agency Ranking