-
公开(公告)号:US20240189994A1
公开(公告)日:2024-06-13
申请号:US18539171
申请日:2023-12-13
Applicant: Google LLC
Inventor: Keerthana P G , Karol Hausman , Julian Ibarz , Brian Ichter , Alexander Irpan , Dmitry Kalashnikov , Yao Lu , Kanury Kanishka Rao , Michael Sahngwon Ryoo , Austin Charles Stone , Teddey Ming Xiao , Quan Ho Vuong , Sumedh Anand Sontakke
IPC: B25J9/16
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for controlling an agent interacting with an environment. In one aspect, a method comprises: receiving a natural language text sequence that characterizes a task to be performed by the agent in the environment; generating an encoded representation of the natural language text sequence; and at each of a plurality of time steps: obtaining an observation image characterizing a state of the environment at the time step; processing the observation image to generate an encoded representation of the observation image; generating a sequence of input tokens; processing the sequence of input tokens to generate a policy output that defines an action to be performed by the agent in response to the observation image; selecting an action to be performed by the agent using the policy output; and causing the agent to perform the selected action.
-
公开(公告)号:US20210237266A1
公开(公告)日:2021-08-05
申请号:US17052679
申请日:2019-06-14
Applicant: Google LLC
Inventor: Dmitry Kalashnikov , Alexander Irpan , Peter Pastor Sampedro , Julian Ibarz , Alexander Herzog , Eric Jang , Deirdre Quillen , Ethan Holly , Sergey Levine
Abstract: Using large-scale reinforcement learning to train a policy model that can be utilized by a robot in performing a robotic task in which the robot interacts with one or more environmental objects. In various implementations, off-policy deep reinforcement learning is used to train the policy model, and the off-policy deep reinforcement learning is based on self-supervised data collection. The policy model can be a neural network model. Implementations of the reinforcement learning utilized in training the neural network model utilize a continuous-action variant of Q-learning. Through techniques disclosed herein, implementations can learn policies that generalize effectively to previously unseen objects, previously unseen environments, etc.
-