-
公开(公告)号:US20240078712A1
公开(公告)日:2024-03-07
申请号:US18306771
申请日:2023-04-25
Applicant: Google LLC
Inventor: David Charles Minnen , Saurabh Singh , Johannes Balle , Troy Chinen , Sung Jin Hwang , Nicholas Johnston , George Dan Toderici
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for compressing and decompressing data. In one aspect, a method comprises: processing data using an encoder neural network to generate a latent representation of the data; processing the latent representation of the data using a hyper-encoder neural network to generate a latent representation of an entropy model; generating an entropy encoded representation of the latent representation of the entropy model; generating an entropy encoded representation of the latent representation of the data using the latent representation of the entropy model; and determining a compressed representation of the data from the entropy encoded representations of: (i) the latent representation of the data and (ii) the latent representation of the entropy model used to entropy encode the latent representation of the data.
-
公开(公告)号:US20200027247A1
公开(公告)日:2020-01-23
申请号:US16515586
申请日:2019-07-18
Applicant: Google LLC
Inventor: David Charles Minnen , Saurabh Singh , Johannes Balle , Troy Chinen , Sung Jin Hwang , Nicholas Johnston , George Dan Toderici
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for compressing and decompressing data. In one aspect, a method comprises: processing data using an encoder neural network to generate a latent representation of the data; processing the latent representation of the data using a hyper-encoder neural network to generate a latent representation of an entropy model; generating an entropy encoded representation of the latent representation of the entropy model; generating an entropy encoded representation of the latent representation of the data using the latent representation of the entropy model; and determining a compressed representation of the data from the entropy encoded representations of: (i) the latent representation of the data and (ii) the latent representation of the entropy model used to entropy encode the latent representation of the data.
-
公开(公告)号:US20220138991A1
公开(公告)日:2022-05-05
申请号:US17578794
申请日:2022-01-19
Applicant: Google LLC
Inventor: David Charles Minnen , Saurabh Singh , Johannes Balle , Troy Chinen , Sung Jin Hwang , Nicholas Johnston , George Dan Toderici
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for compressing and decompressing data. In one aspect, a method comprises: processing data using an encoder neural network to generate a latent representation of the data; processing the latent representation of the data using a hyper-encoder neural network to generate a latent representation of an entropy model; generating an entropy encoded representation of the latent representation of the entropy model; generating an entropy encoded representation of the latent representation of the data using the latent representation of the entropy model; and determining a compressed representation of the data from the entropy encoded representations of: (i) the latent representation of the data and (ii) the latent representation of the entropy model used to entropy encode the latent representation of the data.
-
公开(公告)号:US20230099526A1
公开(公告)日:2023-03-30
申请号:US17486359
申请日:2021-09-27
Applicant: Google LLC
Inventor: Troy Chinen , Alex Sukhanov , Eirikur Thor Agustsson , George Dan Toderici
Abstract: Example aspects of the present disclosure are directed to a computer-implemented method for determining a perceptual quality of a subject video content item. The method can include inputting a subject frame set from the subject video content item into a first machine-learned model. The method can also include generating, using the first machine-learned model, a feature based at least in part on the subject frame set. The method can also include outputting, using a second machine-learned model, a score indicating the perceptual quality of the subject video content item based at least in part on the feature.
-
公开(公告)号:US11257254B2
公开(公告)日:2022-02-22
申请号:US16515586
申请日:2019-07-18
Applicant: Google LLC
Inventor: David Charles Minnen , Saurabh Singh , Johannes Balle , Troy Chinen , Sung Jin Hwang , Nicholas Johnston , George Dan Toderici
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for compressing and decompressing data. In one aspect, a method comprises: processing data using an encoder neural network to generate a latent representation of the data; processing the latent representation of the data using a hyper-encoder neural network to generate a latent representation of an entropy model; generating an entropy encoded representation of the latent representation of the entropy model; generating an entropy encoded representation of the latent representation of the data using the latent representation of the entropy model; and determining a compressed representation of the data from the entropy encoded representations of: (i) the latent representation of the data and (ii) the latent representation of the entropy model used to entropy encode the latent representation of the data.
-
公开(公告)号:US11670010B2
公开(公告)日:2023-06-06
申请号:US17578794
申请日:2022-01-19
Applicant: Google LLC
Inventor: David Charles Minnen , Saurabh Singh , Johannes Balle , Troy Chinen , Sung Jin Hwang , Nicholas Johnston , George Dan Toderici
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for compressing and decompressing data. In one aspect, a method comprises: processing data using an encoder neural network to generate a latent representation of the data; processing the latent representation of the data using a hyper-encoder neural network to generate a latent representation of an entropy model; generating an entropy encoded representation of the latent representation of the entropy model; generating an entropy encoded representation of the latent representation of the data using the latent representation of the entropy model; and determining a compressed representation of the data from the entropy encoded representations of: (i) the latent representation of the data and (ii) the latent representation of the entropy model used to entropy encode the latent representation of the data.
-
-
-
-
-