-
公开(公告)号:US20240046686A1
公开(公告)日:2024-02-08
申请号:US17817058
申请日:2022-08-03
Applicant: Google LLC
Inventor: Tianjun Ye , Younghwan Jung , Xiaoqi Ren , Wael Farhan , Tianjun Fu , Nikolaos Kofinas , Nikolay Alexeevich Glushnev , Matthew Eastberg Persons , Xiao Liu , Evan S. Huang , Emmanouil Koukoumidis , Bhavishya Mittal
IPC: G06V30/418 , G06V30/19 , G06V30/412 , G06V30/414 , G06V30/18
CPC classification number: G06V30/418 , G06V30/19107 , G06V30/412 , G06V30/19147 , G06V30/1918 , G06V30/414 , G06V30/18152
Abstract: A method for document extraction includes receiving, from a user device associated with a user, an annotated document that includes one or more fields. Each respective field of the one or more fields of the annotated document is labeled by a respective annotation. The method includes clustering, using a template matching algorithm, the annotated document into a cluster and inducing, using the annotated document, a document template for the cluster. The method includes receiving, from the user device, an unannotated document including the one or more fields. The method includes clustering, using the template matching algorithm, the unannotated document into the cluster and, in response to clustering the unannotated document into the cluster, extracting, using the document template, the one or more fields.
-
公开(公告)号:US20250045316A1
公开(公告)日:2025-02-06
申请号:US18788178
申请日:2024-07-30
Applicant: Google LLC
Inventor: Jinhyuk Lee , Zhuyun Dai , Xiaoqi Ren , Iftekhar Naim , Yi Luan , Blair Yuxin Chen , Siddhartha Reddy Jonnalagadda , Ming-Wei Chang , Daniel Matthew Cer , Gustavo Adolfo Hernandez Abrego , Jeremy Robert Cole , Colin Hearne Evans , Yuzhe Zhao , Pranay Bhatia , Rajvi Kapadia , Riham Hassan Abdel-Moneim Mansour , Raphael Dominik Hoffman , Simon Kunio Tokumine , Scott Bradley Huffman , Stephen Zachary Karukas , Michael Yiupun Kwong , Shu Zheng , Yan Qiao , Lukas Rutishauser , Anand Rajan Iyer
Abstract: An example method includes providing, to a sequence model (i) a plurality of few-shot prompts, wherein each prompt comprises a demonstration passage, a demonstration task, and a demonstration query, wherein the demonstration task describes a type of retrieval, and wherein the demonstration query is relevant to the demonstration task, and (ii) a plurality of passages sampled from a corpus of passages. The method also includes receiving, from the sequence model and for the plurality of passages and based on the plurality of few-shot prompts, a respective plurality of predicted task-query pairs, the sequence model having been prompted to predict a task based on an input passage, and predict an output query relevant to the predicted task. The method further includes generating a synthetic training dataset comprising the plurality of passages and the respective plurality of predicted task-query pairs. The method also includes providing the synthetic training dataset.
-
公开(公告)号:US20230274143A1
公开(公告)日:2023-08-31
申请号:US18173985
申请日:2023-02-24
Applicant: Google LLC
Inventor: Zizhao Zhang , Zifeng Wang , Chen-Yu Lee , Ruoxi Sun , Sayna Ebrahimi , Xiaoqi Ren , Guolong Su , Vincent Perot , Tomas Pfister , Han Zhang
IPC: G06N3/08
CPC classification number: G06N3/08
Abstract: A method for rehearsal-free continual learning includes obtaining a set of training samples where training sample in the set of training samples is associated with a respective task of a plurality of different tasks. The method includes obtaining a task-invariant prompt representative of learned knowledge common to each respective task of the plurality of different tasks. The method includes, for each respective task of the plurality of different tasks, obtaining a respective task-specific prompt representative of learned knowledge specific to the respective task. The method includes, during each of one or more training iterations, for each respective training sample in the set of training samples, selecting the respective task-specific prompt representative of the respective task of the respective training sample and training a model using the task-invariant prompt and the selected respective task-specific prompt.
-
-