摘要:
The invention relates to a method for adjusting an optical rotating data transmission device having two units that are rotatable with respect to each other about a rotation axis, and that each have a coaxial collimator for coupling light in or out, and relates also to an optical rotating data transmission device that is adjustable by means of the method. For an adjustment, a deviation of a light beam from the rotation axis is determined by means of two detectors at different distances, and from this a positional deviation and also a tilt of the light beam is calculated and suitably compensated.
摘要:
The invention relates to a method for adjusting an optical rotating data transmission device having two units that are rotatable with respect to each other about a rotation axis, and that each have a coaxial collimator for coupling light in or out, and relates also to an optical rotating data transmission device that is adjustable by means of the method. For an adjustment, a deviation of a light beam from the rotation axis is determined by means of two detectors at different distances, and from this a positional deviation and also a tilt of the light beam is calculated and suitably compensated.
摘要:
In a lens system, such as for use in optical rotary joints, obliquely tilted cavities are inserted in a light path between light-waveguides and lenses to be coupled thereto in order to compensate lateral displacements between the light waveguides and the lenses. The cavities are filled with an optical medium having a predetermined refractive index in order to achieve a parallel displacement of a light-ray path, so that the ray path passes centrally through the lenses.
摘要:
In a lens system, such as for use in optical rotary joints, obliquely tilted cavities are inserted in a light path between light-waveguides and lenses to be coupled thereto in order to compensate lateral displacements between the light waveguides and the lenses. The cavities are filled with an optical medium having a predetermined refractive index in order to achieve a parallel displacement of a light-ray path, so that the ray path passes centrally through the lenses.
摘要:
An optical rotating data transmission device for polarization-maintaining transmission of linearly polarized light includes at least one first collimator for coupling on first light-waveguides, and also a second collimator for coupling on second light-waveguides, the second collimator being supported to be rotatable relative to the first collimator about a rotation axis. At least two λ/4 plates for converting linear polarization to circular polarization and vice-versa are provided in between a plate for attaching optical fibers and a micro lens system.
摘要:
An optical rotating data transmission device comprises a first collimator arrangement for coupling-on first light-waveguides, and a second collimator arrangement for coupling-on second light-waveguides, which is supported to be rotatable relative to the first collimator arrangement about a rotation axis. A Dove prism is provided between the collimator arrangements as a derotating element. Furthermore, the collimator arrangements pre provided with adapter elements having rotationally symmetrical conical faces. Prism adapter elements are disposed on the end faces of the Dove prism and have prism adapter elements on the sides facing the collimator arrangements. These also have rotationally symmetrical conical faces with a surface configuration that is inverse to that of the adapter elements of the collimator arrangements.
摘要:
An optical rotating data transmission device for polarization-maintaining transmission of linearly polarized light includes at least one first collimator for coupling on first light-waveguides, and also a second collimator for coupling on second light-waveguides, the second collimator being supported to be rotatable relative to the first collimator about a rotation axis. At least two λ/4 plates for converting linear polarization to circular polarization and vice-versa are provided in between a plate for attaching optical fibers and a micro lens system.
摘要:
An optical rotating data transmission device comprises a first collimator arrangement for coupling-on first light-waveguides, and a second collimator arrangement for coupling-on second light-waveguides, which is supported to be rotatable relative to the first collimator arrangement about a rotation axis. A Dove prism is provided between the collimator arrangements as a derotating element. Furthermore, the collimator arrangements pre provided with adapter elements having rotationally symmetrical conical faces. Prism adapter elements are disposed on the end faces of the Dove prism and have prism adapter elements on the sides facing the collimator arrangements. These also have rotationally symmetrical conical faces with a surface configuration that is inverse to that of the adapter elements of the collimator arrangements.
摘要:
An optical rotary joint comprises a first collimator arrangement for coupling-on first light-waveguides and a second collimator arrangement for coupling-on second light-waveguides, with the second collimator arrangement being supported to be rotatable relative to the first collimator arrangement about a rotation axis. A Dove prism is provided between the collimator arrangements as a derotating element. An intermediate layer is provided on at least one boundary face of an optical constituent part to a surrounding medium, which the intermediate layer comprises a nano-structure having a mean refractive index lying between a refractive index of a material of the optical constituent part and a refractive index of the medium of the surroundings.
摘要:
An optical rotary joint comprises a first collimator arrangement for coupling-on first light-waveguides and a second collimator arrangement for coupling-on second light-waveguides, with the second collimator arrangement being supported to be rotatable relative to the first collimator arrangement about a rotation axis. A Dove prism is provided between the collimator arrangements as a derotating element. An intermediate layer is provided on at least one boundary face of an optical constituent part to a surrounding medium, which the intermediate layer comprises a nano-structure having a mean refractive index lying between a refractive index of a material of the optical constituent part and a refractive index of the medium of the surroundings.