Abstract:
The invention relates to an ozone generator, comprising two electrodes and a dielectric layer arranged between the above such that between the dialectic layer and one of the electrodes an ozonizing gap is formed, through which an oxygen-containing gas can be run. In the direction of the flow of the gas, a dielectric capacity (CD) of the dielectric layer of the gas becomes smaller and/or layer thickness of the dielectric layer becomes greater, such that a gap width of the ozonizing gap is greater on the inlet side than the outlet side.
Abstract:
The inventive ozone generator comprises at least one tubular external electrode (4), at least one internal electrode (7), wherein each internal electrode consists of a plurality of tubular metal segments (8) which are closed at least partially at each end and externally ceramic-coated, said tubular segments are disposed one behind another, mechanically de-coupled from each other and electrically connected, a rod (11) axially crosses the tubular segments (8) and is provided on the end thereof with means (12, 13) for axially clamping the tubular segments to each other in such a way that an electric contact is formed. Each tubular metal segment (8) is provided at each end thereof with an outwardly convex bottom (8a, 8b) which is embodied substantially in the form of a spherical cap, comprises a central area (18) for electric contact and is provided with a ceramic coating (9) consisting of at least two thin layers (9a, 9b).
Abstract:
The invention relates to an ozone generator, comprising two electrodes and a dielectric layer arranged between the above such that between the dialectic layer and one of the electrodes an ozonizing gap is formed, through which an oxygen-containing gas can be run. In the direction of the flow of the gas, a dielectric capacity (CD) of the dielectric layer of the gas becomes smaller and/or layer thickness of the dielectric layer becomes greater, such that a gap width of the ozonizing gap is greater on the inlet side than the outlet side.
Abstract:
A method is proposed for the estimating of the residual service life of an apparatus which is subjected to wear during operation steps. For at least one characteristic parameter (T) which is sensitive to the wear (V), a relationship is determined to a time parameter (A) which is representative for the operating period, and a limit value (G) is fixed for the characteristic parameter (T) which gives the maximum permitted wear. A code field (KF) is established which gives a relationship between the characteristic parameter (T), the time parameter (A) and the wear (V), actual values are determined for the characteristic parameter (T) in dependence on the time parameter (A) with the aid of data obtained by a measurement, and the instantaneously present wear (V) is determined from the actual values with reference in each case to the code field (KF). Starting from the instantaneous actual value of the characteristic parameter (T), a determination is made by means of extrapolation to the limit value (G) of the end value of the time parameter (A) for which the maximum permitted wear is reached, and the residual service life (RL) is estimated by a comparison of this end value with the value for the time parameter which belongs to the instantaneously present wear.
Abstract:
The inventive ozone generator comprises at least one tubular external electrode (4), at least one internal electrode (7), wherein each internal electrode consists of a plurality of tubular metal segments (8) which are closed at least partially at each end and externally ceramic-coated, said tubular segments are disposed one behind another, mechanically de-coupled from each other and electrically connected, a rod (11) axially crosses the tubular segments (8) and is provided on the end thereof with means (12, 13) for axially clamping the tubular segments to each other in such a way that an electric contact is formed. Each tubular metal segment (8) is provided at each end thereof with an outwardly convex bottom (8a, 8b) which is embodied substantially in the form of a spherical cap, comprises a central area (18) for electric contact and is provided with a ceramic coating (9) consisting of at least two thin layers (9a, 9b).