PROCESS FOR DESULFURIZATION OF HYDROCARBONS

    公开(公告)号:US20210238488A1

    公开(公告)日:2021-08-05

    申请号:US17054566

    申请日:2019-05-28

    Abstract: A process for hydrodesulfurizing an olefinic naphtha feedstock while retaining a substantial amount of the olefins, which feedstock has a T95 boiling point below 250° C. and contains at least 50 ppmw of organically bound sulfur and from 5% to 60% olefins, the process including hydrodesulfurizing the feedstock in a sulfur removal stage in the presence of a gas including hydrogen and a hydrodesulfurization catalyst, at hydrodesulfurization reaction conditions, to convert at least 60% of the organically bound sulfur to hydrogen sulfide and to produce a desulfurized product stream wherein the gas to oil ratio and the pressure are configured for the selectivity slope, (% HDS−% OSAT)/(% OSAT*(100−% HDS)), to be above 0.55, and to provide a lower octane loss at all severities above 60% HDS, compared to compared to all prior reported processes with similar conversion of organic sulfur with a lower gas to oil ratio, as measured by the selectivity slope.

    PROCESS FOR DESULFURIZATION OF HYDROCARBONS

    公开(公告)号:US20210309923A1

    公开(公告)日:2021-10-07

    申请号:US17054544

    申请日:2019-05-28

    Abstract: A process for hydrodesulfurizing an olefinic naphtha feedstock while retaining a substantial amount of the olefins, which feedstock has a T95 boiling point below 250° C. and contains at least 50 ppmw of organically bound sulfur and from 5% to 60% olefins, the process including hydrodesulfurizing the feedstock in a sulfur removal stage in the presence of a gas including hydrogen and a hydrodesulfu-rization catalyst, at hydrodesulfurization reaction conditions, to convert at least 60% of the organically bound sulfur to hydrogen sulfide and to produce a desulfurized product stream, with the associated benefit of such a process providing a lower octane loss at all severities above 60% HDS, compared to a process with similar conversion of organic sulfur with a lower gas to oil ratio, as measured by the selectivity slope, while avoiding excessive increase of equipment size by limiting gas to oil ratio.

Patent Agency Ranking