-
公开(公告)号:US11410810B2
公开(公告)日:2022-08-09
申请号:US17667635
申请日:2022-02-09
Applicant: HARBIN INSTITUTE OF TECHNOLOGY
Inventor: Zhiyin Sun , Liyi Li , Donghua Pan , Kai Song , Yuxi Liu , Liguo Tan , Yiyang Zhao
Abstract: A distributed demagnetizing coil system, a shielding device, and a demagnetizing method. The system includes turns of demagnetizing coils evenly wound on each shielding surface of a shielding body in the shielding device at intervals and connecting wires provided on outer side of the shielding surface in an inflection manner. One half of each turn is located on inner side of the wound shielding body and the other half of each turn s located on outer side of the wound shielding body for providing corresponding demagnetizing magnetic fields to form a closed magnetic flux loop. One half of each connecting wire is connected to the corresponding demagnetizing coil, the other half of each connecting wire is reversely inflected along an original path and is connected to a power supply module, so that corresponding demagnetizing current is introduced into each demagnetizing coil connected to the connecting wire.
-
公开(公告)号:US11520068B2
公开(公告)日:2022-12-06
申请号:US17238447
申请日:2021-04-23
Applicant: Harbin Institute of Technology
Inventor: Kai Song , Ying Sun , Tian Zhou , Guo Wei , Chunbo Zhu
Abstract: The disclosure discloses a detection coil structure based on interlayer coupling and a metal object detection system. The detection coil structure includes: a top sub-detection coil and a bottom sub-detection coil, wherein the top and bottom sub-detection coils are the same in structure and similar or same in size and are orthogonal to each other, and both the outer boundaries and geometric symmetry centers of the detection coils are completely coincident; the top sub-detection coil includes a first terminal, a second terminal, a third terminal and a fourth terminal, and the bottom sub-detection coil includes a fifth terminal, a sixth terminal, a seventh terminal and an eighth terminal; and the first terminal is connected to the second terminal, the seventh terminal is connected to the eighth terminal, and the third terminal and the fourth terminal are respectively connected to the fifth terminal and the sixth terminal. When there is no metal object near the coil, the top and bottom sub-detection coils are completely decoupled, and the mutual inductance is zero. When there is a metal object near the coil, the detection coil structure can significantly amplify the impedance variation of the metal object to the entire detection coil to improve the detection effect by means of the mutual inductance coupling effect between the top and bottom sub-detection coils, and at the same time, a staggered arrangement structure can further eliminate non-detection blind zones.
-
公开(公告)号:US11309743B1
公开(公告)日:2022-04-19
申请号:US17195863
申请日:2021-03-09
Applicant: Harbin Institute of Technology
Inventor: Kai Song , Zhi Bie , Chao Wang , Guang Yang , Chunbo Zhu , Rengui Lu
Abstract: The disclosure provides a balanced-current circuit structure and a parameter design method for a bifilar winding coil of wireless power transfer. The disclosure relates to the technical field of magnetic coupling wireless power transfer. The circuit includes a bifilar winding coil, a compensation capacitor array and a controlled voltage source array. The bifilar winding coil includes a first coil and a second coil, the compensation capacitor array includes a first compensation capacitor and a second compensation capacitor, and the controlled voltage source array includes a first controlled voltage source and a second controlled voltage source. Compared with the existing centralized series compensation scheme, the scheme proposed by the disclosure can realize the currents in two windings of the bifilar winding coil being basically the same, so as to eliminate the current imbalance problem existing in the traditional compensation mode, thereby fully exerting the current-carrying capacity of the bifilar winding coil, and improving the practicability of the bifilar winding coil in practical applications.
-
公开(公告)号:US11521777B2
公开(公告)日:2022-12-06
申请号:US17699240
申请日:2022-03-21
Applicant: HARBIN INSTITUTE OF TECHNOLOGY
Inventor: Zhiyin Sun , Liyi Li , Donghua Pan , Kai Song , Yuxi Liu , Yinxi Jin , Zhilong Zou
IPC: H01F13/00
Abstract: A demagnetization method for a multilayer shielding apparatus is provided. In the demagnetization method, the demagnetization is realized on the basis of a demagnetization coil system. The demagnetization coil system includes a plurality of turns of demagnetization coils (2), a plurality of connection wires and a power supply module. The multilayer shielding apparatus includes at least two layers of shielding bodies (1); all the layers of shielding bodies (1) are sleeved layer by layer from inside to outside; a plurality of turns of demagnetization coils (2) are wound on each layer of shielding bodies (1) at intervals; and one half of each turn of demagnetization coils (2) is located inside the wound shielding bodies (1), and the other half is located outside the wound shielding bodies (1). Each demagnetization coil (2) is connected to the power supply module through the corresponding connection wire.
-
公开(公告)号:US20220334287A1
公开(公告)日:2022-10-20
申请号:US17238447
申请日:2021-04-23
Applicant: Harbin Institute of Technology
Inventor: Kai Song , Ying Sun , Tian Zhou , Guo Wei , Chunbo Zhu
Abstract: The disclosure discloses a detection coil structure based on interlayer coupling and a metal object detection system. The detection coil structure includes: a top sub-detection coil and a bottom sub-detection coil, wherein the top and bottom sub-detection coils are the same in structure and similar or same in size and are orthogonal to each other, and both the outer boundaries and geometric symmetry centers of the detection coils are completely coincident; the top sub-detection coil includes a first terminal, a second terminal, a third terminal and a fourth terminal, and the bottom sub-detection coil includes a fifth terminal, a sixth terminal, a seventh terminal and an eighth terminal; and the first terminal is connected to the second terminal, the seventh terminal is connected to the eighth terminal, and the third terminal and the fourth terminal are respectively connected to the fifth terminal and the sixth terminal. When there is no metal object near the coil, the top and bottom sub-detection coils are completely decoupled, and the mutual inductance is zero. When there is a metal object near the coil, the detection coil structure can significantly amplify the impedance variation of the metal object to the entire detection coil to improve the detection effect by means of the mutual inductance coupling effect between the top and bottom sub-detection coils, and at the same time, a staggered arrangement structure can further eliminate non-detection blind zones.
-
-
-
-