Abstract:
In one example, a method comprises measuring, by a processor, the flow rate of a cleaning fluid to clean at least a portion of a printing apparatus. The measured flow rate is compared to a desired flow rate. When the measured flow rate is outside of a first deviation from the desired flow rate, but within a second deviation from the desired flow rate, then the method in this example comprises changing the operation of a component of a printing apparatus.
Abstract:
A print apparatus is disclosed. The print apparatus includes a photoconductive surface to receive a latent image representative of an image to be printed onto a printable substrate; a charging component to apply a voltage is to be applied to the photoconductive surface as the charging component moves relative to the photoconductive surface; and processing circuitry to receive data indicative of a measurement of a first current resulting from the voltage applied by the charging component; determine, responsive to detecting an increase in the measured first current relative to a reference current, the increase being greater than a first defined threshold current, that there exists a point defect under affecting the latent image; and generate instruction data responsive to determining that there exists a point defect under affecting the latent image. A method and a machine-readable medium are also disclosed.
Abstract:
A computer-implemented method is disclosed. The method includes receiving a first indication that a first replaceable component of a print apparatus has been replaced; receiving, prior to any print impressions being made using the print apparatus since receiving the first indication, a second indication of an intention to replace a second replaceable component of the print apparatus; retrieving data regarding previous replacements of replaceable components of the print apparatus; determining, based on the retrieved data, whether or not replacement of the second replaceable component is to be restricted; and responsive to determining that replacement of the second replaceable component is to be restricted, restricting replacement of the second replaceable component. An apparatus and a machine-readable medium are also disclosed.
Abstract:
A printing device containing a heating apparatus that heats an image substrate, a temperature sensor associated with the image substrate and a processor communicatively coupled to the heating apparatus. The processor determines the heating power of the heating apparatus, compares the heating power to a predetermined power range, determines a status of the temperature sensor when the heating power is outside the predetermined power range, and triggers a response mode of the printing device based on the determined status of the temperature sensor.
Abstract:
A printing device containing a heating apparatus that heats an image substrate, a temperature sensor associated with the image substrate and a processor communicatively coupled to the heating apparatus. The processor determines the heating power of the heating apparatus, compares the heating power to a predetermined power range, determines a status of the temperature sensor when the heating power is outside the predetermined power range, and triggers a response mode of the printing device based on the determined status of the temperature sensor.
Abstract:
A printing device includes a printing engine to selectively output print material, a replaceable item of the printing engine, and a subsystem for the printing engine. A machine learning model is used to control controllable parameters of the subsystem for the printing engine, based on physical characteristic measurements of the printing device, to maximize a lifespan of the replaceable item.
Abstract:
There is disclosed a device such as a printer or temperature control device for a printer. The device may comprise a photoreceptor. The device may further comprise a heat exchanger to regulate a temperature of the photoreceptor. The device may further comprise a temperature regulator to measure a temperature of a surface of the photoreceptor and control the heat exchanger based on the measured temperature. The device may further comprise a superior temperature controller to, during a pre-print phase of a print action, inhibit the control of the heat exchanger by the temperature regulator and control the heat exchanger to provide a specified amount of heat exchange.
Abstract:
A computer-implemented method is disclosed. The method includes receiving a first indication that a first replaceable component of a print apparatus has been replaced; receiving, prior to any print impressions being made using the print apparatus since receiving the first indication, a second indication of an intention to replace a second replaceable component of the print apparatus; retrieving data regarding previous replacements of replaceable components of the print apparatus; determining, based on the retrieved data, whether or not replacement of the second replaceable component is to be restricted; and responsive to determining that replacement of the second replaceable component is to be restricted, restricting replacement of the second replaceable component. An apparatus and a machine-readable medium are also disclosed.
Abstract:
A printing device having a heating apparatus arranged to heat an image substrate, a temperature sensor associated with the image substrate, and a processor communicatively coupled to the heating apparatus. During a simulation mode of the printing device, the processor determines the heating power of the heating apparatus, predicts a temperature of the image substrate based on the heating power, compares the predicted temperature to a measured temperature of the image substrate by the temperature sensor, determines a calibration offset when the measured temperature deviates from the predicted temperature, and selectively generates a control signal for use in calibrating the temperature sensor based on the calibration offset.
Abstract:
The invention relates to a method for adjusting a gap in a printing system in which a first roller and a second roller are provided, wherein at least one of said first roller and said second roller comprises a seam, said seam corresponding to a variation of the diameter of said first roller and said second roller, respectively, along a circumference thereof. An interaction zone is provided, wherein said second roller is in rolling contact with said first roller under pressure, said interaction zone defining a gap for inserting a media to be printed. A size of said gap is controlled by varying a relative position of said first roller and said second roller when said at least one seam passes through said interaction zone, and said gap is adjusted in accordance with a length of said media to be printed and/or in accordance with a length of an image to be printed.