Abstract:
An improved translating cowl (transcowl) assembly for a thrust reverser system for a turbine engine is provided. The transcowl assembly comprises an outer skin comprised of a first composite material and an inner skin comprised of a second composite material. The inner skin is configured to couple circumferentially within the outer skin, and creates a flow path for engine exhaust flow. The inner skin comprises a contoured depression configured to provide clearance for movement of a blocker door. A metallic bracket is disposed between the inner skin and outer skin.
Abstract:
A system and method for monitoring a thrust reverser system are provided. The embodiments described herein utilize sensors located proximate locks comprising a thrust reverser locking system. The provided system and method detect deflection and displacement proximate the locks to determine when individual locks have failed.
Abstract:
A thrust reverser system comprising a single row vane assembly is provided. The provided thrust reverser system is capable of meeting performance requirements for turbine engines with reduced weight and cost.
Abstract:
A thrust reverser system for a turbine engine includes a support structure, a transcowl, a door, a lock, and a first elastic element. The transcowl is mounted on the support structure and is translatable between a stowed position, a deployed position, and an over-stow position. The door is pivotally coupled to the support structure and is rotatable between at least a first position, a second position, and a third position. The lock is movable between a locked position, to prevent transcowl translation toward the deployed position, and an unlocked position, to allow transcowl translation toward the deployed position. The lock is only able to move to the unlocked position when the transcowl is in the over-stow position. The first elastic element is disposed within the stowed position aperture and, when engaging both the support structure and the transcowl, supplies a force to the transcowl.
Abstract:
A thrust reverser system comprising a single row vane assembly is provided. The provided thrust reverser system is capable of meeting performance requirements for turbine engines with reduced weight and cost.
Abstract:
A system and method for reducing idle thrust in a translating cowl reverser system is provided. The provided system and method provide a partial deployment, or thrust reverser system intermediate position for a translating cowl thrust reverser system.
Abstract:
A thrust reverser system having an asymmetric vane assembly is provided. The provided thrust reverser system generates a desired vertical thrust component that at least partially offsets a potential nose-up pitch moment. The provided thrust reverser system employs a single row asymmetric vane geometry that reduces weight and material cost.
Abstract:
A system and method for an improved thrust reverser is provided. The provided thrust reverser employs hidden linkage assemblies to decrease drag in the engine exhaust flow and increase turbine engine performance. The hidden linkage assemblies are placed in a space between the blocker door and the transcowl, thereby not affecting the engine exhaust flow.
Abstract:
A thrust reverser system having an asymmetric vane assembly is provided. The provided thrust reverser system generates a desired vertical thrust component that at least partially offsets a potential nose-up pitch moment. The provided thrust reverser system employs a single row asymmetric vane geometry that reduces weight and material cost.
Abstract:
A thrust reverser system capable of providing high efficiency within a tightly constrained nacelle is provided. The thrust reverser system provides a displaceable internal door pivotally mounted within a transcowl. The displaceable internal door is rotatable about a pivot axis that is positioned aft of a front edge of the transcowl when the transcowl is in a deployed position.