Abstract:
A spiral ultrasonic tomography imaging method and system are provided. The method is to use synchronous rotation of an ultrasonic probe or cyclic switching of emission array elements in the ultrasonic probe under the premise of a uniform displacement of the ultrasonic probe along the Z axis, so that the change trajectory of the positions of emission array elements over time in a three-dimensional space at each ultrasonic emission time is distributed along a spiral line or a curve. During the process of the uniform displacement of the ultrasonic probe along the Z axis, the ultrasonic probe emits ultrasonic waves and receives and collects echo data. The collected echo data is stored and post-processed to realize ultrasonic tomography imaging of an object. The spiral ultrasonic tomography three-dimensional scanning method and the corresponding system realize rapid continuous uninterrupted data acquisition to ensure that higher spatial resolution in the Z-axis direction.
Abstract:
A three-dimensional ultrasound tomography method and system based on spiral scanning are provided. The method includes the following. (1) Collecting raw data: an emission array element is switched while a probe maintains a uniform linear motion, so that changes in trajectory with time of a position of an equivalent emission array element in a three-dimensional space show a spiral or a partial spiral, and echo data is received. (2) Pre-processing data. (3) Calculating coordinates of each equivalent emission array element. (4) Calculating coordinates of an imaging focus point. (5) Performing synthetic aperture focusing on each imaging focus point. (6) Post-processing data. The disclosure improves the principle of the imaging method, the design of the overall process, etc. Volume data containing information of continuous tissue layers is obtained through spiral scanning. Applying the synthetic aperture focusing technique in the three-dimensional space improves the resolution between layers and shorten the scan time.
Abstract:
The disclosure is related to the technical field of functional imaging, and discloses an ultrasound CT image reconstruction method and system based on ray theory, wherein the method includes an ultrasound CT sound speed reconstruction method and an ultrasound CT attenuation coefficient reconstruction method based on ray theory; the ultrasound CT sound speed reconstruction method based on ray theory includes: (1) extraction of the difference in travel time; (2) calculate the ray path that the acoustic wave passes from the transmitting array element to the receiving array element; (3) solution for inverse problem: by using the quasi-Newton method to solve the path-slowness-time equation system, the speed reconstruction value vector of the object to be measured can be obtained.
Abstract:
The invention discloses a split row-column addressing method for three-dimensional ultrasound imaging, and the method comprises: for an N×N planar array, obtain the pulse-echo response distribution from fully connected two-dimensional planar array, parameters thereof comprising beam widths A′ and B′ at −6 dB and −20 dB respectively, average side lobe C′, highest side lobe D′ and main side-lobe energy ratio E′; set counter K=2, split two-dimensional planar array into K regions in channel direction, determine array elements amount and connect array elements in each region; calculate the time delay according to distance between the coordinates of each region and the focus point within a scanning range of the two-dimensional planar array, and analyze the two-dimensional planar array by ultrasonic sound field simulation algorithm according to the time delay of each region. The invention can solve the prior art of low resolution, and the problem that transmitted and received beam cannot be deflected.