Abstract:
The present invention discloses a registration method and system for a non-rigid multi-modal medical image. The registration method comprises: obtaining local descriptors of a reference image according to Zernike moments of order 0 and repetition 0 and Zernike moments of order 1 and repetition 1 of the reference image; obtaining local descriptors of a floating image according to Zernike moments of order 0 and repetition 0 and Zernike moments of order 1 and repetition 1 of the floating image; and finally obtaining a registration image according to the local descriptors of the reference image and the floating image. In the present, by using self-similarity of the multi-modal medical image and adopting the Zernike moment based local descriptor, the non-rigid multi-modal medical image registration is thus converted into the non-rigid mono-modal medical image registration, thereby greatly improving its accuracy and robustness.
Abstract:
A spiral ultrasonic tomography imaging method and system are provided. The method is to use synchronous rotation of an ultrasonic probe or cyclic switching of emission array elements in the ultrasonic probe under the premise of a uniform displacement of the ultrasonic probe along the Z axis, so that the change trajectory of the positions of emission array elements over time in a three-dimensional space at each ultrasonic emission time is distributed along a spiral line or a curve. During the process of the uniform displacement of the ultrasonic probe along the Z axis, the ultrasonic probe emits ultrasonic waves and receives and collects echo data. The collected echo data is stored and post-processed to realize ultrasonic tomography imaging of an object. The spiral ultrasonic tomography three-dimensional scanning method and the corresponding system realize rapid continuous uninterrupted data acquisition to ensure that higher spatial resolution in the Z-axis direction.
Abstract:
The invention discloses a split row-column addressing method for three-dimensional ultrasound imaging, and the method comprises: for an N×N planar array, obtain the pulse-echo response distribution from fully connected two-dimensional planar array, parameters thereof comprising beam widths A′ and B′ at −6 dB and −20 dB respectively, average side lobe C′, highest side lobe D′ and main side-lobe energy ratio E′; set counter K=2, split two-dimensional planar array into K regions in channel direction, determine array elements amount and connect array elements in each region; calculate the time delay according to distance between the coordinates of each region and the focus point within a scanning range of the two-dimensional planar array, and analyze the two-dimensional planar array by ultrasonic sound field simulation algorithm according to the time delay of each region. The invention can solve the prior art of low resolution, and the problem that transmitted and received beam cannot be deflected.
Abstract:
A three-dimensional ultrasound tomography method and system based on spiral scanning are provided. The method includes the following. (1) Collecting raw data: an emission array element is switched while a probe maintains a uniform linear motion, so that changes in trajectory with time of a position of an equivalent emission array element in a three-dimensional space show a spiral or a partial spiral, and echo data is received. (2) Pre-processing data. (3) Calculating coordinates of each equivalent emission array element. (4) Calculating coordinates of an imaging focus point. (5) Performing synthetic aperture focusing on each imaging focus point. (6) Post-processing data. The disclosure improves the principle of the imaging method, the design of the overall process, etc. Volume data containing information of continuous tissue layers is obtained through spiral scanning. Applying the synthetic aperture focusing technique in the three-dimensional space improves the resolution between layers and shorten the scan time.