Abstract:
Methods and apparatus to operate a covering of an architectural covering are disclosed. An example apparatus includes a clutch to disengage a motor when the motor is not in use. The dual control architectural covering further includes a clutch to disengage a motor from moving a covering to facilitate manual operation of the covering of an architectural covering when the motor is not in use; and a controller: to track a covering position based on a first encoder measurement from a first encoder; and to track a motor position when the motor disengages based on a second encoder measurement from a second encoder different from the first encoder.
Abstract:
Methods and apparatus to control an architectural opening covering assembly are disclosed herein. An example architectural opening covering assembly includes a tube and a covering coupled to the tube such that rotation of the tube winds or unwinds the covering around the tube. A motor is operatively coupled to the tube to rotate the tube. The example architectural opening covering assembly also includes a gravitational sensor to generate tube position information based on a gravity reference. The example architectural opening covering assembly further includes a controller communicatively coupled to the motor to control the motor. The controller is to determine a position of the covering based on the tube position information.
Abstract:
Methods and apparatus to control an architectural opening covering assembly are disclosed herein. An example architectural opening covering assembly includes a tube and a covering coupled to the tube such that rotation of the tube winds or unwinds the covering around the tube. A motor is operatively coupled to the tube to rotate the tube. The example architectural opening covering assembly also includes a gravitational sensor to generate tube position information based on a gravity reference. The example architectural opening covering assembly further includes a controller communicatively coupled to the motor to control the motor. The controller is to determine a position of the covering based on the tube position information.
Abstract:
A method implemented in an architectural covering. The method includes transmitting a first drive instruction to drive a motor in a first direction while the motor is in an engaged state, wherein driving the motor in the first direction causes the covering to move. The method further includes determining the motor is to terminate an operation. The method further includes transmitting a termination instruction to the motor to terminate the operation. The method further includes determining a first position of the motor. The method further includes transmitting a second drive instruction to drive the motor in a second direction opposite the first direction from the first position to a second position, causing the motor to enter a disengaged state, wherein driving the motor in the second direction does not cause the covering to move.
Abstract:
Methods and apparatus to operate a covering of an architectural covering are disclosed. An example apparatus includes a clutch to disengage a motor when the motor is not in use. The dual control architectural covering further includes a clutch to disengage a motor from moving a covering to facilitate manual operation of the covering of an architectural covering when the motor is not in use; and a controller: to track a covering position based on a first encoder measurement from a first encoder; and to track a motor position when the motor disengages based on a second encoder measurement from a second encoder different from the first encoder.
Abstract:
A dual control architectural covering is disclosed. A dual control architectural covering includes a clutch to disengage a motor when the motor is not in use. The dual control architectural covering further includes a manual control to move the covering of the architectural opening while the motor is disengaged. The dual control architectural covering further includes a braking element to resist movement of a drive element of the covering when the motor is disengaged.
Abstract:
A method implemented in an architectural covering. The method comprising powering down, prior to transitioning to a sleep mode, a position tracking device configured to generate output data indicating a position of at least one of a covering or a motor. The method further comprising transitioning from an operational mode to the sleep mode, the sleep mode associated with a lower power consumption than the operational mode. The method further comprising exiting the sleep mode based on a trigger and powering up, after exiting the sleep mode, the position tracking device. The method further comprising receiving the output data from the position tracking device. The method further comprising determining whether the position has changed since the transitioning to the sleep mode. The method further comprising continuing to operate outside of the sleep mode if the position has changed, or returning to the sleep mode if the position has not changed.
Abstract:
Example architectural opening coverings powered by rotary motors are described. An example an architectural covering comprises a rotatable member, a covering mounted to said rotatable member, a motor to rotate a drive shaft, and a drive shaft coupling structured to: couple the drive shaft to said rotatable member to rotate said rotatable member to raise said covering when said motor is energized to rotate the drive shaft in a first direction, and substantially prevent the drive shaft from applying torque to said rotatable member when said motor is energized to rotate the drive shaft in a second direction to lower said covering.
Abstract:
Example architectural opening coverings powered by rotary motors are described. An example an architectural covering comprises a rotatable member, a covering mounted to said rotatable member, a motor to rotate a drive shaft, and a drive shaft coupling structured to: couple the drive shaft to said rotatable member to rotate said rotatable member to raise said covering when said motor is energized to rotate the drive shaft in a first direction, and substantially prevent the drive shaft from applying torque to said rotatable member when said motor is energized to rotate the drive shaft in a second direction to lower said covering.
Abstract:
A dual control architectural covering is disclosed. A dual control architectural covering includes a clutch to disengage a motor when the motor is not in use. The dual control architectural covering further includes a manual control to move the covering of the architectural opening while the motor is disengaged. The dual control architectural covering further includes a braking element to resist movement of a drive element of the covering when the motor is disengaged.