摘要:
A method and apparatus for the removal of free, emulsified, or dissolved water from liquids of low volatility, such as oil, is shown. The liquid of low volatility is removed by contacting the fluid stream of concern with one side of a semi-permeable membrane. The membrane divides a separation chamber into a feed side into which the stream of fluid is fed, and a permeate side from which the water is removed. The permeate side of the chamber is maintained at a low partial pressure of water through presence of vacuum, or by use of a sweep gas.
摘要:
An interface includes three sub-interfaces. A first and second sub-interface receive first/second inbound IQ data streams, respectively, packetize the first/second inbound IQ data streams to obtain first/second inbound IQ data packets, respectively, and transmit the first/second inbound IQ data packets to the baseband processor via a first/second set of RX lanes, respectively. Each first/second inbound IQ data packet comprises a data packet identifier out of a common set of possible data packet identifiers. A third sub-interface receives outbound IQ data packets from the baseband processor via a TX lane, and depacketizes the outbound IQ data packets to obtain an outbound IQ data stream. The third sub-interface receives an RX not-acknowledge signal via the TX lane that identifies a defective first or second inbound IQ data packet within the first/second inbound IQ data packets.
摘要:
An interface includes three sub-interfaces. A first and second sub-interface receive first/second inbound IQ data streams, respectively, packetize the first/second inbound IQ data streams to obtain first/second inbound IQ data packets, respectively, and transmit the first/second inbound IQ data packets to the baseband processor via a first/second set of RX lanes, respectively. Each first/second inbound IQ data packet comprises a data packet identifier out of a common set of possible data packet identifiers. A third sub-interface receives outbound IQ data packets from the baseband processor via a TX lane, and depacketizes the outbound IQ data packets to obtain an outbound IQ data stream. The third sub-interface receives an RX not-acknowledge signal via the TX lane that identifies a defective first or second inbound IQ data packet within the first/second inbound IQ data packets.