Abstract:
A transformation on raw data is applied to produce transformed data, where the transformation includes at least one selected from among a summary of the raw data or a transform of the raw data between different domains. In response to a query to access data, the query is processed using the transformed data.
Abstract:
Examples herein involve graph processing using a shared memory. An example method includes distributing vertices of a graph to a plurality of graph partition processors of a system, the graph partition processors to process non-overlapping sets of vertices of the graph; storing a master copy of a vertex state of the graph in a shared memory of the system; instructing the graph partition processors to iteratively process respective vertices of the graph partitions based on local copies of the state of the graph stored in respective local memories of the graph partition processors; and updating the master copy of the state of the graph in the shared memory based on the iterative processing of the partitions of the vertices by the graph partition processors until convergence of the graph.
Abstract:
Examples herein involve graph processing using a shared memory. An example method includes distributing vertices of a graph to a plurality of graph partition processors of a system, the graph partition processors to process non-overlapping sets of vertices of the graph; storing a master copy of a vertex state of the graph in a shared memory of the system; instructing the graph partition processors to iteratively process respective vertices of the graph partitions based on local copies of the state of the graph stored in respective local memories of the graph partition processors; and updating the master copy of the state of the graph in the shared memory based on the iterative processing of the partitions of the vertices by the graph partition processors until convergence of the graph.
Abstract:
A technique includes performing graph inference in a graph inference engine that includes multiple processing nodes to determine assignments for vertices of a graph. Performing the graph inference includes controlling remote memory accesses within the engine, including storing first data in a local memory of the first processing node, where the first data represents at least assignments for a plurality of vertices of the graph; in the first processing node, determining updates for the assignments for a subset of the plurality of vertices of a partition of the graph assigned to the first processing node and modifying the first data based on the updates; and communicating the updates to at least one other processing node of the multiple processing nodes, where at least one other partition of the graph is assigned to the other processing node(s).
Abstract:
A transformation on raw data is applied to produce transformed data, where the transformation includes at least one selected from among a summary of the raw data or a transform of the raw data between different domains. In response to a query to access data, the query is processed using the transformed data.
Abstract:
An example technique includes assigning partitions of a dataset of multidimensional points to a plurality of local memory nodes of a multicore machine and using the local memory nodes for a search query to determine similarity matches in the dataset for a given multidimensional point. The using includes parallel searching with the local memory nodes in the assigned partitions to identify candidate similarity matches to the given multidimensional point using indexes derived from the multidimensional points, the parallel searching for each node progressing through a sequence of search distances and providing an ongoing search result for each search distance from the given multidimensional point and regulating an extent of the parallel searching based on the ongoing search results.
Abstract:
An example technique includes assigning partitions of a dataset of multidimensional points to a plurality of local memory nodes of a multicore machine and using the local memory nodes for a search query to determine similarity matches in the dataset for a given multidimensional point. The using includes parallel searching with the local memory nodes in the assigned partitions to identify candidate similarity matches to the given multidimensional point using indexes derived from the multidimensional points, the parallel searching for each node progressing through a sequence of search distances and providing an ongoing search result for each search distance from the given multidimensional point and regulating an extent of the parallel searching based on the ongoing search results.
Abstract:
Storing time series data for a search query includes identifying a time series whose representation is to be pre-computed based on available memory storage, pre-computing at least one representation of the identified time series, and storing the at least one representation in the memory storage.