Abstract:
In one embodiment, a touch sensor includes a first electrode, a second electrode, and a spacer layer located between the first electrode and the second electrode. One of the first electrode and the second electrode is a drive electrode to which a drive signal is applied. The other one of the first electrode and the second electrode is a receiving electrode that receives the drive signal by a mutual capacitance between the first electrode and the second electrode. When an external pressure is applied to the first electrode through a display, the first electrode is concavely bent toward the second electrode. The mutual capacitance between the first electrode and the second electrode changes according to a distance between the first electrode and the second electrode. The magnitude of the external pressure according to the change of the capacitance between the first electrode and the second electrode is detected.
Abstract:
A touch input device which includes a display module and is capable of detecting a pressure may be provided. The touch input device includes: a display module including a flat portion and at least one curved portion which extends from the flat portion and is curved with a predetermined curvature; and a pressure detection module which is formed under the display module and detects a touch pressure applied to a surface of the display module. The pressure detection module detects the touch pressure on the basis of a capacitance change amount according to a distance change between a reference potential layer and the pressure detection module. As a result, the touch input device including various types and forms of the display modules is capable of efficiently detecting the touch position and touch pressure.
Abstract:
A sensitivity compensation method of a touch input device sensing a touch pressure may be provided. The sensitivity compensation method includes: detecting a capacitance change amount by applying a pressure to a plurality of points defined on a touch sensor panel; generating a raw data for the capacitance change amount of the defined point; generating a decimal value data for each of the sets by dividing a data value within the set by a maximum value within the set; calculating an average value of each defined point; generating a representative value data by calculating a value corresponding to all the points of the touch sensor panel; calculating a balance factor on the basis of the representative value data; and compensating for a touch pressure sensitivity of the touch input device by using the balance factor.
Abstract:
A sensitivity compensation method of a touch input device sensing a touch pressure may be provided. The sensitivity compensation method includes: detecting a capacitance change amount by applying a pressure to a plurality of points defined on a touch sensor panel; generating a raw data for the capacitance change amount of the defined point; generating a decimal value data for each of the sets by dividing a data value within the set by a maximum value within the set; calculating an average value of each defined point; generating a representative value data by calculating a value corresponding to all the points of the touch sensor panel; calculating a balance factor on the basis of the representative value data; and compensating for a touch pressure sensitivity of the touch input device by using the balance factor.
Abstract:
A touch input device capable of detecting a pressure of a touch on a touch surface may be provided that includes: a display module; and a pressure sensor which is disposed at a position where a distance between the pressure sensor and a reference potential layer is changeable according to the touch on the touch surface. The distance is changeable according to a pressure magnitude of the touch. The pressure sensor outputs a signal including information on a capacitance which is changed according to the distance. The pressure sensor includes a plurality of electrodes to form a plurality of channels. The pressure magnitude of the touch is detected on the basis of a change amount of the capacitance detected in each of the channels. According to the embodiment of the present invention, it is possible to provide a pressure sensor for pressure detection, a touch input device including the same, and a pressure detection method using the same. In addition, according to the embodiment of the present invention, it is possible to provide the pressure sensor having a high-pressure detection accuracy of the touch and the touch input device including the pressure sensor.
Abstract:
An electrode sheet disposed in a touch input device capable of detecting a pressure of a touch on a touch surface may be provided. The touch input device includes: a display module; a pressure electrode disposed under the display module; and a reference pressure electrode disposed under the display module. A distance between the pressure electrode and a reference potential layer is changed when the pressure is applied to the touch surface. A capacitance detected at the pressure electrode is changed according to the distance change. A magnitude of the pressure applied to the touch surface is calculated on the basis of a difference between a reference capacitance calculated from a capacitance detected at the reference pressure electrode and a detected capacitance calculated from the capacitance detected at the pressure electrode.
Abstract:
An electrode sheet including an electrode layer and a support layer may be provided. The electrode layer includes a first electrode and a second electrode. The electrode sheet is used to detect a capacitance change between the first electrode and the second electrode, which is changed according to a relative distance change between the electrode layer and a reference potential layer disposed apart from the electrode sheet. The support layer is made of a material which is bent when a pressure is applied thereto and which is restored to its original state when the pressure is released therefrom.
Abstract:
A touch sensor panel may be provided that includes: a plurality of first electrodes which are formed on a first insulation layer and extend in a first axial direction; a plurality of second electrodes which are formed on a second insulation layer and extend in a second axial direction crossing the first axial direction; and a space layer located between the first electrode and the second insulation layer. A distance between the first electrode and the second electrode changes depending on a magnitude of a pressure of a touch applied to at least any one of the first electrode and the second electrode. A capacitance between the first electrode and the second electrode changes depending on the distance.
Abstract:
A touch pressure sensitivity correction method may be provided that includes: defining a plurality of reference points on a touch sensor panel; generating a reference data for a capacitance change amount sensed by applying the same pressure to the plurality of reference points; generating an interpolated data corresponding to a capacitance change amount for a random point present between the plurality of reference points; calculating, on the basis of the reference data and interpolated data, with respect to the reference points and the random point respectively, a correction factor for correcting a sensitivity of a touch input device to a target value; and correcting uniformly for the touch pressure sensitivity of the touch input device by applying the calculated correction factor to each corresponding point.
Abstract:
An electrode sheet disposed in a touch input device capable of detecting a pressure of a touch on a touch surface may be provided. The touch input device includes: a display module; a pressure electrode disposed under the display module; and a reference pressure electrode disposed under the display module. A distance between the pressure electrode and a reference potential layer is changed when the pressure is applied to the touch surface. A capacitance detected at the pressure electrode is changed according to the distance change. A magnitude of the pressure applied to the touch surface is calculated on the basis of a difference between a reference capacitance calculated from a capacitance detected at the reference pressure electrode and a detected capacitance calculated from the capacitance detected at the pressure electrode.