摘要:
The present invention provides a developing device that allows for maintaining the conveyance amount of a toner within a certain definite range. A developing device 12 of the present invention is provided with a toner conveying unit 13 configured to convey a fist toner and a controlling member 15 configured to control the thickness of a toner layer formed with the first toner conveyed by the toner conveying unit 13, wherein a second toner provided with a charged amount per unit mass that differs from a charged amount per unit mass of the first toner is applied over the surface of the controlling member 15.
摘要:
To provide a toner recovery apparatus including: a toner transporting duct; and an endless toner transporting belt; wherein the toner transporting belt is rotated in a loop form in such a way that it descends in a region where the outer circumferential surface faces a ceiling surface of the toner transporting duct and that it rises in a region where the outer circumferential surface of the toner transporting belt faces a bottom surface of the toner transporting duct, the toner recovery apparatus transports the residual toner to the outlet by holding the toner by the convex parts, spaces formed between convex parts and the bottom surface of the toner transporting duct, and the toner comprises a binding resin, releasing agent, coloring material and external additive, and torque T (mNm) measured by torque measurement method using a conical rotor in a space ratio of 50% to 60% is 1.0 to 2.5.
摘要:
To provide a toner recovery apparatus including: a toner transporting duct; and an endless toner transporting belt; wherein the toner transporting belt is rotated in a loop form in such a way that it descends in a region where the outer circumferential surface faces a ceiling surface of the toner transporting duct and that it rises in a region where the outer circumferential surface of the toner transporting belt faces a bottom surface of the toner transporting duct, the toner recovery apparatus transports the residual toner to the outlet by holding the toner by the convex parts, spaces formed between convex parts and the bottom surface of the toner transporting duct, and the toner comprises a binding resin, releasing agent, coloring material and external additive, and torque T (mNm) measured by torque measurement method using a conical rotor in a space ratio of 50% to 60% is 1.0 to 2.5.
摘要:
To provide a toner recovery apparatus including: a toner transporting duct; and an endless toner transporting belt; wherein the toner transporting belt is rotated in a loop form in such a way that it descends in a region where the outer circumferential surface faces a ceiling surface of the toner transporting duct and that it rises in a region where the outer circumferential surface of the toner transporting belt faces a bottom surface of the toner transporting duct, the toner recovery apparatus transports the residual toner to the outlet by holding the toner by the convex parts, spaces formed between convex parts and the bottom surface of the toner transporting duct, and the toner comprises a binding resin, releasing agent, coloring material and external additive, and torque T (mNm) measured by torque measurement method using a conical rotor in a space ratio of 50% to 60% is 1.0 to 2.5.
摘要:
Provided is an image forming method that comprises a charging step, an exposing step, a developing step, an intermediate transfer step and a secondary transfer step, wherein the diameter R (mm) of a secondary transfer roller used in the secondary transfer step and the distance A (mm) between a nip center of the secondary transfer roller and a site where paper contacts with a secondary transfer belt at ingress side satisfy the following relation, and the charge amount Q (μC/g) of the toner going into the secondary transfer step satisfies the following relation. R/40
摘要:
To provide a pulverized toner including: a wax-containing resin; a coloring material; and an external additive, wherein the pulverized toner has an average circularity of 0.890 to 0.930, a particle diameter of 6 μm to 10 μm, and a torque of 1.0 mNm to 2.5 mNm at a vacancy ratio 58% in the pulverized toner as measured by a torque measuring method using a conical rotor, and wherein the pulverized toner is a wax-containing pulverized toner for non-magnetic one component development.
摘要:
The present invention provides a developing device that allows for maintaining the conveyance amount of a toner within a certain definite range. A developing device 12 of the present invention is provided with a toner conveying unit 13 configured to convey a first toner and a controlling member 15 configured to control the thickness of a toner layer formed with the first toner conveyed by the toner conveying unit 13, wherein a second toner provided with a charged amount per unit mass that differs from a charged amount per unit mass of the first toner is applied over the surface of the controlling member 15.
摘要:
Provided is an image forming method that comprises a charging step, an exposing step, a developing step, an intermediate transfer step and a secondary transfer step, wherein the diameter R (mm) of a secondary transfer roller used in the secondary transfer step and the distance A (mm) between a nip center of the secondary transfer roller and a site where paper contacts with a secondary transfer belt at ingress side satisfy the following relation, and the charge amount Q (μC/g) of the toner going into the secondary transfer step satisfies the following relation. R/40
摘要:
The present invention is to provide a nonmagnetic one-component toner containing a colorant, and a binder resin, wherein metal oxide fine particles are fixed on a toner surface with an adhesion strength of 95% to 99%, the toner has a direct current resistance of 1E7 Ω·cm to 1E9 Ω·cm, and an electrostatic capacity of 1.0E-12F to 1.5E-11F.
摘要:
A non-magnetic toner, including a binder resin; a wax present dispersing in the toner in the shape of a particle; and a colorant, wherein the wax having a particle diameter not less than 2.0 μm and less than 3.0 μm is not less than 20% and less than 40% by number based on total number thereof; the wax has a mode value not less than 1.5 μm and less than 2.0 μm in a frequency distribution of 0.1 μm width; and the following relationship is satisfied: 45