摘要:
A learning apparatus comprises a plurality of detection units configured to detect a part or whole of a target object in an image and output a plurality of detection results; an estimation unit configured to estimate a state of the target object based on at least one of the plurality of detection results; a classification unit configured to classify the image into a plurality of groups based on the state of the target object; and a weight calculation unit configured to calculate weight information on each of the plurality of detection units for each of the groups based on the detection results.
摘要:
A learning apparatus comprises a plurality of detection units configured to detect a part or whole of a target object in an image and output a plurality of detection results; an estimation unit configured to estimate a state of the target object based on at least one of the plurality of detection results; a classification unit configured to classify the image into a plurality of groups based on the state of the target object; and a weight calculation unit configured to calculate weight information on each of the plurality of detection units for each of the groups based on the detection results.
摘要:
A learning apparatus for a pattern detector, which includes a plurality of weak classifiers and detects a specific pattern from input data by classifications of the plurality of weak classifiers, acquires a plurality of data for learning in each of which whether or not the specific pattern is included is given, makes the plurality of weak classifiers learn by making the plurality of weak classifiers detect the specific pattern from the acquired data for learning, selects a plurality of weak classifiers to be composited from the weak classifiers which have learned, and composites the plurality of weak classifiers into one composite weak classifier based on comparison between a performance of the composite weak classifier and performances of the plurality of weak classifiers.
摘要:
A pattern recognition method, applicable to input information including a plurality of regions, includes obtaining a certainty at which each region of the input information includes a pattern, selecting one or more regions having a relatively high-level certainty among the plurality of regions, and performing pattern detection processing on the selected region or regions.
摘要:
In an image within which a face pattern is detected, when a ratio of a skin color pixel is equal to or smaller than a first threshold value in a first region and a ratio of a skin color pixel is equal to or greater than a second threshold value in a second r region, the vicinity of the first region is determined to be a face candidate position at which the face pattern can exist. Face detection is carried out on the face candidate position. The second region is arranged in a predetermined position relative to the first region.
摘要:
A plurality of pieces of learning data, each associated with a class to which the piece of the learning data belong, are input. In each piece of the learning data, a statistical amount of attribute values of elements in each of specific k parts, k being equal to or larger than 1, is calculated. Each piece of the learning data is mapped in a k-dimensional feature space as a vector having the calculated k statistics amounts as elements. Based on each piece of the mapped learning data and the classes to which the pieces of learning data belong, parameters for classifying input data into one of the plurality of classes are learned in the k-dimensional feature space. By using the parameters, pattern classification can be performed with high speed and high accuracy.
摘要:
A pattern recognition method, applicable to input information including a plurality of regions, includes obtaining a certainty at which each region of the input information includes a pattern, selecting one or more regions having a relatively high-level certainty among the plurality of regions, and performing pattern detection processing on the selected region or regions.
摘要:
A learning apparatus for a pattern detector, which includes a plurality of weak classifiers and detects a specific pattern from input data by classifications of the plurality of weak classifiers, acquires a plurality of data for learning in each of which whether or not the specific pattern is included is given, makes the plurality of weak classifiers learn by making the plurality of weak classifiers detect the specific pattern from the acquired data for learning, selects a plurality of weak classifiers to be composited from the weak classifiers which have learned, and composites the plurality of weak classifiers into one composite weak classifier based on comparison between a performance of the composite weak classifier and performances of the plurality of weak classifiers.
摘要:
In an image within which a face pattern is detected, when a ratio of a skin color pixel is equal to or smaller than a first threshold value in a first region and a ratio of a skin color pixel is equal to or greater than a second threshold value in a second r region, the vicinity of the first region is determined to be a face candidate position at which the face pattern can exist. Face detection is carried out on the face candidate position. The second region is arranged in a predetermined position relative to the first region.
摘要:
In an image within which a face pattern is detected, when a ratio of a skin color pixel is equal to or smaller than a first threshold value in a first region and a ratio of a skin color pixel is equal to or greater than a second threshold value in a second r region, the vicinity of the first region is determined to be a face candidate position at which the face pattern can exist. Face detection is carried out on the face candidate position. The second region is arranged in a predetermined position relative to the first region.