摘要:
A coil unit comprises a gradient coil which is disposed along a static magnetic field generating source, and a radio frequency coil which is disposed along the gradient coil in a test region at a position closer to the center of the test region compared with the gradient coil, and a conductor part which is disposed between the gradient coil and the radio frequency coil, and covers periphery of the radio frequency coil. The radio frequency coil comprises a first loop coil and a second loop coil locating in planes substantially perpendicular to direction of the static magnetic field, a plurality of linear conductors connecting the first loop coil and the second loop coil and substantially parallel to the direction of the static magnetic field, and a plurality of first capacitors disposed in the first loop coil and the second loop coil.
摘要:
There is provided a coil unit having a large region of homogeneous sensitivity for the axial direction even with a shortened rung length of birdcage type RF coil.The coil unit comprises a gradient coil which is disposed along a static magnetic field generating source, and a radio frequency coil which is disposed along the gradient coil in a test region at a position closer to the center of the test region compared with the gradient coil, and a conductor part which is disposed between the gradient coil and the radio frequency coil, and covers periphery of the radio frequency coil. The radio frequency coil comprises a first loop coil and a second loop coil locating in planes substantially perpendicular to direction of the static magnetic field, a plurality of linear conductors connecting the first loop coil and the second loop coil and substantially parallel to the direction of the static magnetic field, and a plurality of first capacitors disposed in the first loop coil and the second loop coil. The coil unit further comprises a first connecting part, which electrically connects the radio frequency coil and the conductor part via a second capacitor and comprises an electric power supply circuit disposed in parallel to the second capacitor, and a second connecting part which connects the radio frequency coil and the conductor part via a third capacitor.
摘要:
In the magnetic resonance imaging device, the distance between the first and second coils is different in the circumferential direction and has a first region (A1) (θ=0, π) and a second region (A2) (θ=π/2) narrower than the first region (A1). In the first coil, wiring patterns (17a, 17b) on the side of a zero-plane (F0) passing through the center of the first coil and perpendicular to the axis direction (z-axis direction) meander in the circumferential direction such that the wiring patterns (17a, 17b) depart from the zero-plane (F0) in the first region (A1) and approach the zero-plane (F0) in the second region (A2). This provides a gradient magnetic field coil capable of configuring wiring patterns without using a loop coil that does not pass through the z-axis.
摘要:
An MRI apparatus excellent in magnetic field generation efficiency is provided. According to this invention, a main coil (52) of a gradient magnetic field coil (13) is partially recessed to reduce the total thickness of a radio-frequency coil (11) and a gradient magnetic field coil (13). That is, the main coil (52) is designed in a tubular shape, and the diameter r1 at the center portion of the imaging space is larger than the diameter r2 of the main coil end portion. Accordingly, the RF coil (11) can be disposed to be near to the gradient magnetic field coil (13) side without lowering the magnetic field generation efficiency.
摘要:
In the magnetic resonance imaging device, the distance between the first and second coils is different in the circumferential direction and has a first region (A1) (θ=0, π) and a second region (A2) (θ=π/2) narrower than the first region (A1). In the first coil, wiring patterns (17a, 17b) on the side of a zero-plane (F0) passing through the center of the first coil and perpendicular to the axis direction (z-axis direction) meander in the circumferential direction such that the wiring patterns (17a, 17b) depart from the zero-plane (F0) in the first region (A1) and approach the zero-plane (F0) in the second region (A2). This provides a gradient magnetic field coil capable of configuring wiring patterns without using a loop coil that does not pass through the z-axis.
摘要:
An MRI apparatus excellent in magnetic field generation efficiency is provided. According to this invention, a main coil (52) of a gradient magnetic field coil (13) is partially recessed to reduce the total thickness of a radio-frequency coil (11) and a gradient magnetic field coil (13). That is, the main coil (52) is designed in a tubular shape, and the diameter r1 at the center portion of the imaging space is larger than the diameter r2 of the main coil end portion. Accordingly, the RF coil (11) can be disposed to be near to the gradient magnetic field coil (13) side without lowering the magnetic field generation efficiency.
摘要:
The magnetic resonance imaging device of the present invention includes a gantry and a bed part comprising a top panel, the gantry comprises a circumferential panel covering outer circumference of a tunnel-shaped static magnetic field space, and a front panel having an opening serving as entrance of a bore for the static magnetic field space, this front panel comprises an arc-shaped outer panel extending from an upper part of the opening serving as entrance of the bore to the ground plane via both sides of the opening, and an inner panel disposed inside the outer panel, a portion connecting the outer panel and the inner panel constitutes a top surface protruding forwardly, and the inner panel is formed in a recessed shape with a concave curved surface extending from the top surface to the opening serving as entrance of the bore.
摘要:
In a gradient magnetic field coil device including: a plurality of main coils generating in an imaging region of a magnetic field resonance imaging device a magnetic field distribution in which an intensity linearly inclines; and a plurality of shield coils, arranged on an opposite side of the imaging region across the main coils, suppressing residual magnetic field generated by the main coils on the opposite side. The plurality of main coils and the plurality of shield coils are connected in series. The device further includes a plurality of current adjusting devices, connected to the shield coils in parallel, independently adjusting currents flowing through the shield coils, respectively, to enhance symmetry of the residual magnetic field. The gradient magnetic field coil device is provided which can suppress generation of eddy current magnetic field even if there is a relative position deviation between the main coils and shield coils.
摘要:
An MRI apparatus having a configuration that reduces vibration of a static magnetic field generating source is provided. A closed vessel 2 of the static magnetic field generating source is provided with a rigid structure 4 for preventing transmission of vibration generated from a gradient magnetic field generating part 21 to other members via the closed vessel 2. The rigid structure 4 uses, for example, a connecting part 4 that connects a face 25 on the imaging space side and a face 26 confronting it. The rigidity of the closed vessel is thereby increased, and therefore vibration transmitted from the gradient magnetic field generating part can be reduced. The connecting part can have a through-hole structure, and in such a case, internal space of through-hole can be used for drawing cables.
摘要:
The present invention is intended to provide a magnetic pole, a magnet apparatus, and a magnetic resonance imaging apparatus that the magnetic structure of the magnet apparatus for generating a uniform magnetic field is formed in a lower burst mode, and the profitability is increased, and at the same time, the uniformity of the magnetic field is improved.According to the present invention, the magnetic poles arranged opposite to each other across a measuring space have at least one of a plurality of hollows and a single hollow having a shape continuously changing on the section perpendicular to the direction of the magnetic field formed in the measuring space and particularly in order to make the magnetic field uniform, the arrangement of the plurality of hollows and the shape of the single hollow are adjusted. The magnet apparatus and magnetic resonance imaging apparatus of the present invention are structured as mentioned above.