摘要:
The developing method includes developing an electrostatic latent image on an image bearing member with a two-component developer including a toner and a carrier and born on at least one developer bearing member, whose surface moves at a linear speed of from 300 mm/sec to 2,000 mm/sec. The carrier includes a particulate core material; and a cover layer located on a surface of the core material and including a crosslinked material obtained by crosslinking a resin including a first unit having a specific tris(trialkylsiloxy) silyl group and a second unit having a specific alkoxysilyl group having a crosslinking ability. Each of the first unit and the second unit is included in the resin in a molar ratio of from 0.1 to 0.9 based on all the units included in the resin.
摘要:
The developing method includes developing an electrostatic latent image on an image bearing member with a two-component developer including a toner and a carrier and born on at least one developer bearing member, whose surface moves at a linear speed of from 300 mm/sec to 2,000 mm/sec. The carrier includes a particulate core material; and a cover layer located on a surface of the core material and including a crosslinked material obtained by crosslinking a resin including a first unit having a specific tris(trialkylsiloxy) silyl group and a second unit having a specific alkoxysilyl group having a crosslinking ability. Each of the first unit and the second unit is included in the resin in a molar ratio of from 0.1 to 0.9 based on all the units included in the resin.
摘要:
A contact developing method including supplying a two-component developer to an electrostatic latent image on a rotating image bearing member by rotating a developing sleeve and a rotatable magnet having multiple magnetic poles provided inside the developing sleeve, to develop the electrostatic latent image into a toner image. The developing sleeve and the image bearing member rotate in the same direction while facing each other. The two-component developer comprises a non-magnetic toner and a carrier. The carrier comprises a magnetic core particle and a resin layer covering the magnetic core particle. The resin layer comprises a conductive particle and a resin. The conductive particle comprises an alumina-based material and a conductive layer covering the alumina-based material. The resin is obtained by heating a copolymer comprising a monomer A unit and a monomer B unit.
摘要:
A contact developing method including supplying a two-component developer to an electrostatic latent image on a rotating image bearing member by rotating a developing sleeve and a rotatable magnet having multiple magnetic poles provided inside the developing sleeve, to develop the electrostatic latent image into a toner image. The developing sleeve and the image bearing member rotate in the same direction while facing each other. The two-component developer comprises a non-magnetic toner and a carrier. The carrier comprises a magnetic core particle and a resin layer covering the magnetic core particle. The resin layer comprises a conductive particle and a resin. The conductive particle comprises an alumina-based material and a conductive layer covering the alumina-based material. The resin is obtained by heating a copolymer comprising a monomer A unit and a monomer B unit.
摘要:
A carrier including a magnetic core particle and a resin layer covering a surface of the magnetic core particle. The magnetic core particle is a ferrite particle including strontium in an amount of 0.005 to 3% by mass, measured by fluorescent X-ray spectroscopy. The resin layer comprises a resin obtained by heating a copolymer comprising a silicon-containing unit A and another silicon-containing specific unit B.
摘要:
A carrier comprising a magnetic core particle having a shape factor SF-2 of 130 to 160 and a resin layer covering a surface of the magnetic core particle. The resin layer comprises a conductive particle and a resin obtained by heating a copolymer comprising a silicon-containing A unit and another silicon-containing B unit.
摘要:
A carrier including a magnetic core particle and a resin layer covering a surface of the magnetic core particle. The magnetic core particle is a ferrite particle including strontium in an amount of 0.005 to 3% by mass, measured by fluorescent X-ray spectroscopy. The resin layer comprises a resin obtained by heating a copolymer comprising a silicon-containing unit A and another silicon-containing specific unit B.
摘要:
A carrier comprising a magnetic core particle having a shape factor SF-2 of 130 to 160 and a resin layer covering a surface of the magnetic core particle. The resin layer comprises a conductive particle and a resin obtained by heating a copolymer comprising a silicon-containing A unit and another silicon-containing B unit having.
摘要:
A carrier for developing an electrostatic latent image of the present invention includes a core material and a coating layer which coats the core material, wherein the coating layer includes a resin and fine particles, wherein the coating layer has an average layer thickness difference of 0.02 μm to 3.0 μm, and wherein the carrier for developing an electrostatic latent image has an arithmetic mean surface roughness Ra1 of 0.5 μm to 0.9 μm.
摘要:
A carrier for developing an electrostatic latent image of the present invention includes a core material and a coating layer which coats the core material, wherein the coating layer includes a resin and fine particles, wherein the coating layer has an average layer thickness difference of 0.02 μm to 3.0 μm, and wherein the carrier for developing an electrostatic latent image has an arithmetic mean surface roughness Ra1 of 0.5 μm to 0.9 μm.