摘要:
The invention relates to a device for hot dip coating a metal bar (1), especially a steel strip, in which the metal bar (1) is directed vertically through a container (3) accommodating the molten coating metal (2) and through a guide channel (4) mounted upstream thereof. The inventive device comprises at least two inductors (5) which are arranged on both sides of the metal bar (1) in the area of the guide channel (4) and generate an electromagnetic field for retaining the coating metal (2) inside the container (3). In order to relax the coating bath, the distance (d) between the walls (6) that delimit the guide channel (4) is not kept constant in a direction (N) extending perpendicular to the surface of the metal strip (1) in the zone (H) of the vertical extension of the guide channel (4), which is located between the bottom side (7) thereof and the bottom area (8) of the container (3).
摘要:
A method for hot dip coating metal strip includes guiding the strip obliquely or vertically through a molten coating metal. The coating thickness is controlled after the strip has emerged from the coating bath, and thin metal strip, which has a tendency to vibrate, is sealed towards the bottom by an electromagnetic traveling field that acts as a sealing field while the coating is laterally guided to compensate for ferromagnetic attraction. The electromagnetic field of one or more main coils in each inductor generates the electromagnetic traveling field as a blocking field or as a pump field, and several correction fields are arranged within the magnet yoke surface. The correction fields are individually determined according to width levels of the metal strip and are distributed according to a production program, and the correction fields are activated by separate pieces of power supply equipment.
摘要:
The invention relates to a device for hot dip coating a metal bar (1), especially a steel strip, in which the metal bar (1) is directed vertically through a container (3) accommodating the molten coating metal (2) and through a guide channel (4) mounted upstream thereof. The inventive device comprises at least two inductors (5) which are arranged on both sides of the metal bar (1) in the area of the guide channel (4) and generate an electromagnetic field for retaining the coating metal (2) inside the container (3). In order to relax the coating bath, the distance (d) between the walls (6) that delimit the guide channel (4) is not kept constant in a direction (N) extending perpendicular to the surface of the metal strip (1) in the zone (H) of the vertical extension of the guide channel (4), which is located between the bottom side (7) thereof and the bottom area (8) of the container (3).
摘要:
The invention relates to a method for melt dip coating a metal strip (1), especially a steel strip (1a), which is guided through a coating station (4). The metal strip (1) is coated with a coating metal (3), the metal strip (1) is centrally maintained in a guide channel (8) in an electromagnetic sealing field (13) which seals the guide channel (8) from below and guides the metal strip (1) laterally, counter to ferromagnetic attraction, through a corrector field (14). The sealing field (13) is embodied as an electromagnetic guiding field (10), as a blocking field (11) or as a pump field (12) in order to select adequate lateral sealing when any particular sealing field (13) is used. Several corrector fields (14) are arranged in a distributed manner in a selected configuration, whereby the position and number thereof are determined individually at least according to the various widths of the metal strip (1).
摘要:
A method for hot dip coating a metal strand includes passing the metal strand vertically through a coating tank that contains molten coating metal and through a guide channel upstream of the coating tank. A electromagnetic field is generated by inductors on both sides of the metal strand and an electromagnetic field superposed on the electromagnetic field of the inductors is generated by supplementary coils on both sides of the metal strand. A center position of the metal strand in the guide channel is stabilized by: (a) measuring the position of the metal strand in the guide channel; (b) measuring the induced current in the inductors; (c) measuring the induced current in the supplementary coils; and (d) influencing the induced current in the supplementary coils as a function of all of the parameters measured in steps (a) to (c).
摘要:
The invention relates to a method for hot-dip coating a metal strand (1), especially a steel strip, according to which the metal strand (1) is vertically guided through a container (3) accommodating the molten coating metal (2) and through a guide channel (4) disposed upstream thereof. An electromagnetic field is generated in the area of the guide channel (4) by means of at least two inductors (5) disposed at both sides of the metal strand (1) to retain the coating material (2) in the container (3). In order to stabilize the metal strand (1) in a center position in the guide channel (4), an electromagnetic field, superimposing the electromagnetic field of the inductors (5), is generated by means of at least two additional coils (6) disposed at both sides of the metal strand (1). In order to improve efficiency of the control of the metal strand in the guide channel, the center position of the metal strand (1) in the guide channel (4) is stabilized in a closed control loop by carrying out the following steps: a) detecting the position (s, s′, s″) of the metal strand (1) in the guide channel (4); b) measuring the induced current (IInd) in the inductors (5); c) measuring the induced current (ICorr) in the additional coils (6); d) influencing the induced current (ICorr) in the additional coils (6) depending on the parameters (s, IInd,ICorr) measured in steps a) to c), in order to maintain the metal strand (1) in a center position in the guide channel (4). The invention further relates to a device for hot-dip coating a metal strand.
摘要:
The invention relates to a device for hot-dip coating a metal strand (1), especially a steel strip, in which the metal strand (1) is vertically guided through a container (3) accommodating the molten coating metal (2) and through a guide channel (4) disposed upstream thereof. The inventive device comprises at least two inductors (5) disposed at both sides of the metal strand (1) in the area of the guide channel (4) that are used to generate an electromagnetic field for retaining the coating metal (2) in the container (3), and at least one sensor (6, 6′) for detecting the position (s) of the metal strand (1) in the area of the guide channel (4). In order to simplify and render more precise the detection of the position of the metal strand in the guide channel, the sensor for detecting the position of the metal strand (1) consists of two coils (6, 6′) that are disposed, when seen from the direction of conveyance (R) of the metal strand (1), within the height (H0) of the inductors (5) between the inductors (5) and the metal strand (1). The invention further relates to a method for hot-dip coating a metal strand.
摘要:
The invention relates to a device for hot-dip coating a metal strand (1), especially a steel strip, in which the metal strand (1) is vertically guided through a container (3) accommodating the molten coating metal (2) and through a guide channel (4) disposed upstream thereof. The inventive device comprises at least two inductors (5) disposed at both sides of the metal strand (1) in the area of the guide channel (4) that are used to generate an electromagnetic field for retaining the coating metal (2) in the container (3), and at least one sensor (6, 6′) for detecting the position (s) of the metal strand (1) in the area of the guide channel (4). In order to simplify and render more precise the detection of the position of the metal strand in the guide channel, the sensor for detecting the position of the metal strand (1) consists of two coils (6, 6′) that are disposed, when seen from the direction of conveyance (R) of the metal strand (1), within the height (H0) of the inductors (5) between the inductors (5) and the metal strand (1). The invention further relates to a method for hot-dip coating a metal strand.
摘要:
The invention relates to a method for hot-dip coating a metal strand (1), especially a steel strip, according to which the metal strand (1) is vertically guided through a container (3) accommodating the molten coating metal (2) and through a guide channel (4) disposed upstream thereof. An electromagnetic field is generated in the area of the guide channel (4) by means of at least two inductors (5) disposed at both sides of the metal strand (1) to retain the coating material (2) in the container (3). In order to stabilize the metal strand (1) in a center position in the guide channel (4), an electromagnetic field, superimposing the electromagnetic field of the inductors (5), is generated by means of at least two additional coils (6) disposed at both sides of the metal strand (1). In order to improve efficiency of the control of the metal strand in the guide channel, the center position of the metal strand (1) in the guide channel (4) is stabilized in a closed control loop by carrying out the following steps: a) detecting the position (s, s′, s″) of the metal strand (1) in the guide channel (4); b) measuring the induced current (IInd) in the inductors (5); c) measuring the induced current (ICorr) in the additional coils (6); d) influencing the induced current (ICorr) in the additional coils (6) depending on the parameters (s, IInd, ICorr) measured in steps a) to c), in order to maintain the metal strand (1) in a center position in the guide channel (4). The invention further relates to a device for hot-dip coating a metal strand.
摘要:
The invention relates to a device for hot dip coating metal strands (1), particularly strip steel, in which the metal strand (1) can be vertically guided through a reservoir (3), which accommodates the molten coating metal (2), and though a guide channel (4) connected upstream therefrom. An electromagnetic inductor (5) is mounted in the area of the guide channel (4) and in order to retain the coating metal (2) inside the reservoir (3), can induce induction currents in the coating metal (2) by means of an electromagnetic blocking field. While interacting with the electromagnetic blocking field, said induction currents exert an electromagnetic force. In order to prevent an intense heating of the metal strand caused by the electromagnetic inductor, the invention provides that the inductor (5, 5a, 5b) is connected to electric power supply means (6) that supply the inductor with an alternating current whose frequency (f) is less than 500 Hz. In particular, a mains frequency of 50 Hz is intended.