摘要:
Environmental control systems and techniques for monitoring heat exchanger fouling are provided herein. In an embodiment, a technique for monitoring heat exchanger fouling includes providing a correlation of heat exchanger fouling to an operating variable. The correlation is programmed into a maintenance system that includes a processor that is adapted to receive data regarding the operating variable. The operating variable is chosen from inlet temperatures of input streams into the heat exchanger and outlet temperatures of output streams out of the heat exchanger, heat exchanger pressure drop, overall heat transfer coefficient value, speed of rotation of an air conditioning machine that includes the heat exchanger, and combinations thereof. Data regarding the operating variable is gathered via a sensor that is adapted to measure the operating variable. The measured operating variable is determined to correspond to excessive heat exchanger fouling in accordance with the correlation using the processor.
摘要:
A system method of estimating health of aircraft brake system friction material includes sensing a temperature of the friction material, and supplying the sensed temperature to a processor-implemented thermal model that is configured to estimate friction material temperatures at one or more locations on the friction material. The estimates of friction material temperatures are supplied to a processor-implemented thermal oxidation model that is configured, based on the estimates of friction material temperatures, to estimate friction material loss due to thermal oxidation. Data representative of runway fluid exposure are supplied to a processor-implemented catalytic oxidation model that is configured, based on the runway fluid exposure, to estimate friction material loss due to catalytic oxidation. The health of the friction material is estimated based on the estimates of friction material loss from the processor-implemented thermal oxidation model and the processor-implemented catalytic oxidation model.
摘要:
A Java-MATLAB bridge is provided for enabling utilization of MATLAB® functionality in an enterprise environment. The Java-MATLAB bridge includes a Java® wrapper and a MATLAB wrapper. The MATLAB wrapper is coupled to the Java wrapper and the Java wrapper provides an entry point for invoking the MATLAB functionality in the enterprise environment.
摘要:
Environmental control systems and techniques for monitoring heat exchanger fouling are provided herein. In an embodiment, a technique for monitoring heat exchanger fouling includes providing a correlation of heat exchanger fouling to an operating variable. The correlation is programmed into a maintenance system that includes a processor that is adapted to receive data regarding the operating variable. The operating variable is chosen from inlet temperatures of input streams into the heat exchanger and outlet temperatures of output streams out of the heat exchanger, heat exchanger pressure drop, overall heat transfer coefficient value, speed of rotation of an air conditioning machine that includes the heat exchanger, and combinations thereof. Data regarding the operating variable is gathered via a sensor that is adapted to measure the operating variable. The measured operating variable is determined to correspond to excessive heat exchanger fouling in accordance with the correlation using the processor.
摘要:
A system method of estimating health of aircraft brake system friction material includes sensing a temperature of the friction material, and supplying the sensed temperature to a processor-implemented thermal model that is configured to estimate friction material temperatures at one or more locations on the friction material. The estimates of friction material temperatures are supplied to a processor-implemented thermal oxidation model that is configured, based on the estimates of friction material temperatures, to estimate friction material loss due to thermal oxidation. Data representative of runway fluid exposure are supplied to a processor-implemented catalytic oxidation model that is configured, based on the runway fluid exposure, to estimate friction material loss due to catalytic oxidation. The health of the friction material is estimated based on the estimates of friction material loss from the processor-implemented thermal oxidation model and the processor-implemented catalytic oxidation model.