Web page ranking with hierarchical considerations
    1.
    发明授权
    Web page ranking with hierarchical considerations 有权
    网页排名等级考虑

    公开(公告)号:US07779001B2

    公开(公告)日:2010-08-17

    申请号:US10978232

    申请日:2004-10-29

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30864

    摘要: The described systems, methods and data structures are directed to ranking Web pages with hierarchical considerations. The hierarchical structures and the linking relationships of the World Wide Web are used to provide a page importance ranking for Web searches. The linking relationships are aggregated to a high level node at each of the hierarchical structures. A link graph analysis is performed on the aggregated linking relationships to determine the importance of each node. The importance of each node may be propagated to pages associated with that node. For each page, the importance of that page and the importance of the node associated with the page are used to calculate the page importance ranking.

    摘要翻译: 所描述的系统,方法和数据结构针对分级考虑对网页排序。 万维网的层次结构和链接关系用于为Web搜索提供页面重要性排名。 链接关系在每个分层结构中聚合到高级节点。 对聚合的链接关系执行链接图分析,以确定每个节点的重要性。 每个节点的重要性可以传播到与该节点相关联的页面。 对于每个页面,使用该页面的重要性和与页面相关联的节点的重要性来计算页面重要性排名。

    Web page ranking with hierarchical considerations
    2.
    发明申请
    Web page ranking with hierarchical considerations 有权
    网页排名等级考虑

    公开(公告)号:US20060095430A1

    公开(公告)日:2006-05-04

    申请号:US10978232

    申请日:2004-10-29

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30864

    摘要: The described systems, methods and data structures are directed to ranking Web pages with hierarchical considerations. The hierarchical structures and the linking relationships of the World Wide Web are used to provide a page importance ranking for Web searches. The linking relationships are aggregated to a high level node at each of the hierarchical structures. A link graph analysis is performed on the aggregated linking relationships to determine the importance of each node. The importance of each node may be propagated to pages associated with that node. For each page, the importance of that page and the importance of the node associated with the page are used to calculate the page importance ranking.

    摘要翻译: 所描述的系统,方法和数据结构针对分级考虑对网页排序。 万维网的层次结构和链接关系用于为Web搜索提供页面重要性排名。 链接关系在每个分层结构中聚合到高级节点。 对聚合的链接关系执行链接图分析,以确定每个节点的重要性。 每个节点的重要性可以传播到与该节点相关联的页面。 对于每个页面,使用该页面的重要性和与页面相关联的节点的重要性来计算页面重要性排名。

    Scalable probabilistic latent semantic analysis
    3.
    发明授权
    Scalable probabilistic latent semantic analysis 有权
    可扩展概率潜在语义分析

    公开(公告)号:US07844449B2

    公开(公告)日:2010-11-30

    申请号:US11392763

    申请日:2006-03-30

    IPC分类号: G06F17/27

    CPC分类号: G06F17/2785

    摘要: A scalable two-pass scalable probabilistic latent semantic analysis (PLSA) methodology is disclosed that may perform more efficiently, and in some cases more accurately, than traditional PLSA, especially where large and/or sparse data sets are provided for analysis. The improved methodology can greatly reduce the storage and/or computational costs of training a PLSA model. In the first pass of the two-pass methodology, objects are clustered into groups, and PLSA is performed on the groups instead of the original individual objects. In the second pass, the conditional probability of a latent class, given an object, is obtained. This may be done by extending the training results of the first pass. During the second pass, the most likely latent classes for each object are identified.

    摘要翻译: 公开了一种可扩展的双向可伸缩概率潜在语义分析(PLSA)方法,其可以比传统的PLSA更有效地执行,在某些情况下可以更准确地执行,特别是在提供大型和/或稀疏数据集用于分析的情况下。 改进的方法可以大大降低培训PLSA模型的存储和/或计算成本。 在双路方法的第一遍中,对象被聚集成组,并且PLSA在组而不是原始的单个对象上执行。 在第二遍中,获得给定对象的潜在类的条件概率。 这可以通过扩展第一遍的训练结果来完成。 在第二遍期间,识别每个对象最可能的潜在类。

    Scalable probabilistic latent semantic analysis
    4.
    发明申请
    Scalable probabilistic latent semantic analysis 有权
    可扩展概率潜在语义分析

    公开(公告)号:US20070239431A1

    公开(公告)日:2007-10-11

    申请号:US11392763

    申请日:2006-03-30

    IPC分类号: G06F17/27

    CPC分类号: G06F17/2785

    摘要: A scalable two-pass scalable probabilistic latent semantic analysis (PLSA) methodology is disclosed that may perform more efficiently, and in some cases more accurately, than traditional PLSA, especially where large and/or sparse data sets are provided for analysis. The improved methodology can greatly reduce the storage and/or computational costs of training a PLSA model. In the first pass of the two-pass methodology, objects are clustered into groups, and PLSA is performed on the groups instead of the original individual objects. In the second pass, the conditional probability of a latent class, given an object, is obtained. This may be done by extending the training results of the first pass. During the second pass, the most likely latent classes for each object are identified.

    摘要翻译: 公开了一种可扩展的双向可伸缩概率潜在语义分析(PLSA)方法,其可以比传统的PLSA更有效地执行,在某些情况下可以更准确地执行,特别是在提供大数据集和/或稀疏数据集用于分析的情况下。 改进的方法可以大大降低培训PLSA模型的存储和/或计算成本。 在双路方法的第一遍中,对象被聚集成组,并且PLSA在组而不是原始的单个对象上执行。 在第二遍中,获得给定对象的潜在类的条件概率。 这可以通过扩展第一遍的训练结果来完成。 在第二遍期间,识别每个对象最可能的潜在类。

    Method and system for prioritizing communications based on sentence classifications
    6.
    发明授权
    Method and system for prioritizing communications based on sentence classifications 有权
    基于句子分类优先通信的方法和系统

    公开(公告)号:US08112268B2

    公开(公告)日:2012-02-07

    申请号:US12254796

    申请日:2008-10-20

    IPC分类号: G06F17/28

    CPC分类号: G06F17/30

    摘要: A method and system for prioritizing communications based on classifications of sentences within the communications is provided. A sentence classification system may classify sentences of communications according to various classifications such as “sentence mode.” The sentence classification system trains a sentence classifier using training data and then classifies sentences using the trained sentence classifier. After the sentences of a communication are classified, a document ranking system may generate a rank for the communication based on the classifications of the sentences within the communication. The document ranking system trains a document rank classifier using training data and then calculates the rank of communications using the trained document rank classifier.

    摘要翻译: 提供了一种基于通信内的句子分类来优先化通信的方法和系统。 句子分类系统可以根据诸如“句子模式”的各种分类对通信句进行分类。句子分类系统使用训练数据训练句子分类器,然后使用训练句子分类器对句子进行分类。 在对通信的句子进行分类之后,文档排序系统可以基于通信中的句子的分类来生成用于通信的等级。 文档排序系统使用训练数据训练文档排序分类器,然后使用经过训练的文档排序分类器来计算通信的等级。

    Method and system for ranking documents of a search result to improve diversity and information richness
    7.
    发明授权
    Method and system for ranking documents of a search result to improve diversity and information richness 失效
    搜索结果排序文件的方法和系统,以提高多样性和信息丰富度

    公开(公告)号:US07664735B2

    公开(公告)日:2010-02-16

    申请号:US10837540

    申请日:2004-04-30

    IPC分类号: G06F17/00

    摘要: A method and system for ranking documents of search results based on information richness and diversity of topics. A ranking system determines the information richness of each document within a search result. The ranking system groups documents of a search result based on their relatedness, meaning that they are directed to similar topics. The ranking system ranks the documents to ensure that the highest ranking documents may include at least one document covering each topic, that is, one document from each of the groups. The ranking system selects the document from each group that has the highest information richness of the documents within the group. When the documents are presented to a user in rank order, the user will likely find on the first page of the search result documents that cover a variety of topics, rather than just a single popular topic.

    摘要翻译: 基于信息丰富性和主题多样性对搜索结果文档进行排序的方法和系统。 排名系统确定搜索结果内每个文档的信息丰富度。 排名系统根据其相关性对搜索结果的文档进行分组,这意味着它们针对类似的主题。 排名系统排列文件,以确保最高排名的文档可能包含至少一个涵盖每个主题的文档,即每个组中的一个文档。 排名系统选择组内文件信息丰富度最高的组中的文档。 当文件以等级顺序呈现给用户时,用户可能会在搜索结果文档的第一页上找到涵盖各种主题的文档,而不仅仅是一个流行的主题。

    METHOD AND SYSTEM FOR DETECTING WHEN AN OUTGOING COMMUNICATION CONTAINS CERTAIN CONTENT
    8.
    发明申请
    METHOD AND SYSTEM FOR DETECTING WHEN AN OUTGOING COMMUNICATION CONTAINS CERTAIN CONTENT 有权
    当出现通信包含某些内容时检测的方法和系统

    公开(公告)号:US20090313706A1

    公开(公告)日:2009-12-17

    申请号:US12510186

    申请日:2009-07-27

    摘要: A method and system for detecting whether an outgoing communication contains confidential information or other target information is provided. The detection system is provided with a collection of documents that contain confidential information, referred to as “confidential documents.” When the detection system is provided with an outgoing communication, it compares the content of the outgoing communication to the content of the confidential documents. If the outgoing communication contains confidential information, then the detection system may prevent the outgoing communication from being sent outside the organization. The detection system detects confidential information based on the similarity between the content of an outgoing communication and the content of confidential documents that are known to contain confidential information.

    摘要翻译: 提供一种用于检测输出通信是否包含机密信息或其他目标信息的方法和系统。 检测系统提供了一系列包含机密信息的文件,称为“机密文件”。 当向检测系统提供传出通信时,将传出通信的内容与机密文档的内容进行比较。 如果传出通信包含机密信息,则检测系统可以防止传出通信被发送到组织外部。 检测系统基于传出通信的内容与已知包含机密信息的机密文档的内容之间的相似性来检测机密信息。

    Query-based snippet clustering for search result grouping
    9.
    发明授权
    Query-based snippet clustering for search result grouping 有权
    基于查询的片段聚类,用于搜索结果分组

    公开(公告)号:US07617176B2

    公开(公告)日:2009-11-10

    申请号:US10889841

    申请日:2004-07-13

    IPC分类号: G06F7/00

    摘要: A clustering architecture that dynamically groups the search result documents into clusters labeled by phrases extracted from the search result snippets. Documents related to the same topic usually share a common vocabulary. The words are first clustered based on their co-occurrences and each cluster forms a potentially interesting topic. Keywords are chosen and then clustered by counting co-occurrences of pairs of keywords. Documents are assigned to relevant topics based on the feature vectors of the clusters.

    摘要翻译: 将搜索结果文档动态地分组到由从搜索结果片段中提取的短语标签的聚类体系结构。 与同一主题相关的文件通常共享一个共同的词汇。 这些单词首先基于它们的共同出现而聚集,并且每个集合形成潜在有趣的主题。 选择关键词,然后通过计算关键字对的共同出现来聚类。 基于集群的特征向量将文档分配给相关主题。

    METHOD AND SYSTEM FOR MINING INFORMATION BASED ON RELATIONSHIPS
    10.
    发明申请
    METHOD AND SYSTEM FOR MINING INFORMATION BASED ON RELATIONSHIPS 有权
    基于关系挖掘信息的方法与系统

    公开(公告)号:US20090228452A1

    公开(公告)日:2009-09-10

    申请号:US12406039

    申请日:2009-03-17

    IPC分类号: G06F17/30

    摘要: A method and system for identifying information about people is provided. The information system identifies groups of people that have relationships based on their relationships to documents or more generally to objects. The information system initially is provided with an indication of which people have which relationships to which documents. The information system then identifies clusters of people based on having a relationship to the same objects. The information system may also identify clusters of related objects associated with a cluster of people. When a user wants to identify information about a person, the user can provide the name of that person to the information system. The information system then can retrieve and display the names of the other people who are in the same cluster as the person.

    摘要翻译: 提供了一种用于识别人的信息的方法和系统。 信息系统根据与文档的关系或更一般地与对象的关系来识别具有关系的人群。 信息系统最初被提供指示哪些人与哪些文档有哪些关系。 然后,信息系统基于与相同对象的关系来识别人群。 信息系统还可以识别与一群人相关联的相关对象的群集。 当用户想要识别关于人的信息时,用户可以向该信息系统提供该人的姓名。 然后,信息系统可以检索和显示与该人在同一集群中的其他人的姓名。