SYSTEM AND METHOD FOR VULNERABILITY LOCALIZATION BASED ON DEEP LEARNING

    公开(公告)号:US20250077683A1

    公开(公告)日:2025-03-06

    申请号:US18650308

    申请日:2024-04-30

    Abstract: The present disclosure relates to a system and method for vulnerability localization based on deep learning, which comprises, at a minimum, a processor configured to: analyze a code file under detection to obtain a first abstract syntax tree devoid of semantic information; build upon the first abstract syntax tree by incorporating data-flow edges and/or control-flow edges, thereby forming a second abstract syntax tree with semantic-flow enhancement; split the second abstract syntax tree to obtain a plurality of second abstract syntax sub-trees; and input these second abstract syntax sub-trees into a pre-established vulnerability detection and localization model. Compared with existing code vulnerability detection methods, the present disclosure employs a semantically-enhanced abstract syntax tree and finely-grained segmentation thereof, enabling both the efficient detection and accurate localization of code vulnerabilities, characterized by swift detection rates, low false positive rates, and commendable interpretability of the detection results.

Patent Agency Ranking