Abstract:
A water purification system includes one or more UV light sources that produce germicidal UV light and provide the UV light to a given amount of fluid contained in a chamber as a batch or as flowing through the chamber. An inner surface of the chamber, that may be reflective, is coated with a thin plastic film, such as polypropylene, that is highly transmissive to UV germicidal light. The thin plastic film separates the inner surface from the fluid, and the UV light passes through the thin plastic film to reach the fluid that is being purified in the chamber. The thin plastic film may be melted at relatively low temperatures to provide heat sealing of the surface to produce the chamber. Alternatively, the thin plastic film may be readily shaped as a bag or pipe that contains or directs fluid flow.
Abstract:
A water purification system includes one or more germicidal UV light sources that operate within an amplifying chamber that contains a given amount of fluid as a batch or as flowing through the chamber at any given time. The amplifying chamber has a highly reflective inner surface that redirects the germicidal UV light that reaches the highly reflective inner surface back through the fluid simultaneously in substantially all directions. A power source drives the one or more UV light sources to provide to the fluid contained within the amplifying chamber a fraction of the total UV energy that is required to purify the given amount of fluid. The amplifying chamber repeatedly redirects the UV light that reaches the highly reflective inner surface back into the fluid, to provide a dose required to purify the fluid.