摘要:
A method for improving the efficiency of antennas having transparent thin-film conductive surfaces, and antennas improved by the method are disclosed. For a selected frequency of antenna operation, values for surface current density in areas distributed over the surface of the thin-film are determined. Regions of the surface containing areas having concentrated current flow are identified based upon the determined values of current density. Antenna efficiency is improved by increasing conductivity in areas of the thin-film surface found to have concentrated current flow. The method enables the improvement of the efficiency of antennas having transparent thin-film conducting surfaces, without unnecessarily obstructing the optical view through the thin-film surfaces of the antennas.
摘要:
A method for improving the efficiency of antennas having transparent thin-film conductive surfaces, and antennas improved by the method are disclosed. For a selected frequency of antenna operation, values for surface current density in areas distributed over the surface of the thin-film are determined. Regions of the surface containing areas having concentrated current flow are identified based upon the determined values of current density. Antenna efficiency is improved by increasing conductivity in areas of the thin-film surface found to have concentrated current flow. The method enables the improvement of the efficiency of antennas having transparent thin-film conducting surfaces, without unnecessarily obstructing the optical view through the thin-film surfaces of the antennas.
摘要:
A method for improving the efficiency of antennas having transparent thin-film conductive surfaces, and antennas improved by the method are disclosed. For a selected frequency of antenna operation, values for surface current density in areas distributed over the surface of the thin-film are determined. Regions of the surface containing areas having concentrated current flow are identified based upon the determined values of current density. Antenna efficiency is improved by increasing conductivity in areas of the thin-film surface found to have concentrated current flow. The method enables the improvement of the efficiency of antennas having transparent thin-film conducting surfaces, without unnecessarily obstructing the optical view through the thin-film surfaces of the antennas.
摘要:
To facilitate GPS hardware selection and evaluate performance of vehicle integrated GPS hardware, including various types of GPS antennas and receivers, within different vehicle operating environments, embodiments of the invention are used to provide a simulator which does not require physical GPS hardware to simulate GPS system performance. Preferably, the simulator randomly generates one or more GPS system link budget variables, within predetermined performance bounds, in order to predict GPS system performance in a specific vehicle operating environment for a given antenna radiation pattern and/or GPS receiver. The simulator employs a Monte Carlo technique to evaluate the GPS system performance based on generated pools of link budget variables.
摘要:
One or more of the embodiments of a dual band stacked patch antenna described herein employ an integrated arrangement of a global positioning system (GPS) antenna and a satellite digital audio radio service (SDARS) antenna. The dual band antenna receives right hand circularly polarized GPS signals in a first frequency band, left hand circularly polarized SDARS signals in a second frequency band, and vertical linear polarized SDARS signals in the second band. The dual band antenna includes a ground plane element, an upper radiating element (which is primarily utilized to receive SDARS signals), dielectric material between the ground plane element and the upper radiating element, and a lower radiating element (which is primarily utilized to receive GPS signals) surrounded by the dielectric material. The dual band antenna uses only one conductive signal feed to receive both GPS and SDARS signals.
摘要:
An onboard wireless communication system for a vehicle, such as a tire pressure monitoring system (“TPMS”) is disclosed. The TPMS includes wheel-mounted radio frequency (“RF”) sensor/transmitters that transmit RF signals conveying tire pressure information, at least one RF relay element, and an RF receiver coupled to a TPMS processor. The RF relay element(s) relay the RF signals from the sensor/transmitters to the RF receiver to reduce the negative effect of electromagnetic field scattering caused by conductive parts of the vehicle.
摘要:
There is provided an exemplary tire pressure monitoring (TPM) system that can use a half-duplex wireless link to communicate between one or more wheel-mounted sensor units and a vehicle-mounted transceiver unit. The half-duplex wireless link enables the sensor units to report sensor readings to the transceiver unit, and it enables the transceiver unit to make configuration changes to the sensor units for improved communication. Some examples of wireless settings that can be modified include modulation settings, data encoding/decoding settings, error correction settings, and transmission power settings.
摘要:
There is provided an exemplary tire pressure monitoring (TPM) system that can use a half-duplex wireless link to communicate between one or more wheel-mounted sensor units and a vehicle-mounted transceiver unit. The half-duplex wireless link enables the sensor units to report sensor readings to the transceiver unit, and it enables the transceiver unit to make configuration changes to the sensor units for improved communication. Some examples of wireless settings that can be modified include modulation settings, data encoding/decoding settings, error correction settings, and transmission power settings.
摘要:
To facilitate GPS hardware selection and evaluate performance of vehicle integrated GPS hardware, including various types of GPS antennas and receivers, within different vehicle operating environments, embodiments of the invention are used to provide a simulator which does not require physical GPS hardware to simulate GPS system performance. Preferably, the simulator randomly generates one or more GPS system link budget variables, within predetermined performance bounds, in order to predict GPS system performance in a specific vehicle operating environment for a given antenna radiation pattern and/or GPS receiver. The simulator employs a Monte Carlo technique to evaluate the GPS system performance based on generated pools of link budget variables.