摘要:
Lung segmentation and bone suppression techniques are helpful pre-processing steps prior to radiographic analyzes of the human thorax, as may occur during cancer screenings and other medical examinations. Autonomous lung segmentation may remove spurious boundary pixels from a radiographic image, as well as identify and refine lung boundaries. Thereafter, autonomous bone suppression may identify clavicle, posterior rib, and anterior rib bones using various image processing techniques, including warping and edge detection. The identified clavicle, posterior rib, and anterior rib bones may then be suppressed from the radiographic image to yield a segmented, bone suppressed radiographic image.
摘要:
Lung segmentation and bone suppression techniques are helpful pre-processing steps prior to radiographic analyses of the human thorax, as may occur during cancer screenings and other medical examinations. Autonomous lung segmentation may remove spurious boundary pixels from a radiographic image, as well as identify and refine lung boundaries. Thereafter, autonomous bone suppression may identify clavicle, posterior rib, and anterior rib bones using various image processing techniques, including warping and edge detection. The identified clavicle, posterior rib, and anterior rib bones may then be suppressed from the radiographic image to yield a segmented, bone suppressed radiographic image.
摘要:
Breast density measurements are used to perform Breast Imaging Reporting and Data System (BI-RADS) classification during breast cancer screenings. The accuracy of breast density measurements can be improved by quantitatively processing digital mammographic images. For example, breast segmentation may be performed on a mammographic image to isolate the breast tissue from the background and pectoralis tissue, while a breast thickness adjustment may be performed to compensate for decreased tissue thickness near the skin line of the breast. In some instances, BI-RADS density categorization may consider the degree to which dense tissue is dispersed throughout the breast. A breast density dispersion parameter can also be obtained using quantitative techniques, thereby providing objective BI-RADS classifications that are less susceptible to human error.