OPTICAL ISOLATOR WITH OPTICAL FIBERS ARRANGED ON ONE SINGLE SIDE

    公开(公告)号:US20230013926A1

    公开(公告)日:2023-01-19

    申请号:US17933431

    申请日:2022-09-19

    Abstract: An optical isolator has optical fibers arranged on a single side. The optical isolator includes an input optical fiber, an output optical fiber, an input splitting/combining device, an output splitting/combining device, an input optical rotation device, an output optical rotation device, a lens, a Faraday rotator, and a reflector. The input optical fiber and the output optical fiber are on a same side of each of the lens, the Faraday rotator, and the reflector. The optical isolator with input and output optical fibers arranged on a single side only needs to use one lens. The input and output splitting/combining devices are fixed on an end surfaces of input/output optical fibers, respectively.

    FOLDED HYBRID ASSEMBLY FOR DOPED FIBER AMPLIFIER

    公开(公告)号:US20240055820A1

    公开(公告)日:2024-02-15

    申请号:US18149512

    申请日:2023-01-03

    CPC classification number: H01S3/06766 H01S3/1608 H01S3/094003

    Abstract: An assembly is used with an amplifier that amplifies light using source light, pump light, and a doped fiber. The assembly has a plurality of ports, including a first port for input of the source light, a second port for input of the pump light, a third port for output to the doped fiber, a fourth port for input from the doped fiber, and a fifth port for amplified output. A birefringent device in optical communication with each of the ports is configured to refract o-light and e-light components of the light passing therethrough with different refractive indices. For the first and fourth ports, a first half-wave plate in optical communication through the birefringent device is configured to rotate polarization of the light passing therethrough with a first rotation. For the second port, a second half-wave plate in optical communication through the birefringent device is configured to rotate polarization of the light passing therethrough with a second rotation different from the first polarization. A lens is used to focus the light, and an optical filter in optical communication with the lens is configured to reflect the pump light back to the lens and being configured to pass the source light. A rotator in optical communication with the lens is configured to rotate polarization of the light passing therethrough with a third rotation. The third rotation is half of the first rotation, and the first rotation is half of the second rotation. Finally, a wedge reflector in optical communication with the rotator is configured to reflect the light incident thereto. The source light and the pump light are combined and communicated from the second port for output to the doped fiber. Meanwhile, amplified light from the doped fiber is received at the fourth port and is communicated to the amplified output. Reverse light from the amplified output can be isolated from reaching the doped fiber, and reverse source light from the doped fiber can be isolated from reaching the source port.

    HIGH ISOLATION OPTICAL SPLITTER
    3.
    发明申请

    公开(公告)号:US20210231873A1

    公开(公告)日:2021-07-29

    申请号:US17248221

    申请日:2021-01-14

    Abstract: A high isolation optical splitter for the field of optical communications may include an integrated structure of an input fiber, a first output fiber, an input splitting/combining device, a first output splitting/combining device, an input rotation device, a first output rotation device, a first lens, an isolator core, a second lens, a second output rotation device, a second output splitting/combining device, and a second output fiber. By adopting the integrated structure, this disclosed splitter integrates functions of an optical isolator and an optical splitter, which both can input an optical signal into one input fiber and can distribute to two output optical fibers for output. The disclosed splitter can isolate light in opposite directions and can reduce damage to a light source at an input end. In a system application, the disclosed splitter can replace two conventional independent optical isolators and optical splitters to effectively reduce the assembly space, lower the assembly difficulty, simplify the assembly process, and facilitate the development of miniaturized and integrated applications of the system.

    OPTICAL ISOLATOR WITH OPTICAL FIBERS ARRANGED ON ONE SINGLE SIDE

    公开(公告)号:US20210223477A1

    公开(公告)日:2021-07-22

    申请号:US17248218

    申请日:2021-01-14

    Abstract: An optical isolator has optical fibers arranged on a single side. The optical isolator includes an input optical fiber, an output optical fiber, an input splitting/combining device, an output splitting/combining device, an input optical rotation device, an output optical rotation device, a lens, a Faraday rotator, and a reflector. The input optical fiber and the output optical fiber are on a same side of each of the lens, the Faraday rotator, and the reflector. The optical isolator with input and output optical fibers arranged on a single side only needs to use one lens. The input and output splitting/combining devices are fixed on an end surfaces of input/output optical fibers, respectively.

Patent Agency Ranking