Abstract:
A paste dispensing transfer system of a stencil printer is configured to print an assembly material on an electronic substrate. The transfer system includes a paste cartridge mechanism coupled to a print head assembly of the stencil printer, and a rotary indexing mechanism coupled to a frame of the stencil printer. The paste dispensing transfer system is configured to transfer a used paste cartridge from the print head assembly to the rotary indexing mechanism supported by the frame and to transfer a new paste cartridge from the rotary indexing mechanism to the print head assembly.
Abstract:
A dispensing system includes an optional pre-heat station configured to receive an electronic substrate, a dispense station configured to dispense material on the electronic substrate received from the optional pre-heat station, an optional post-heat station configured to receive the electronic substrate from the dispense station, and a non-contact sensor positioned above the electronic substrate on at least one of the optional pre-heat station, the dispense station, and the optional post-heat station.
Abstract:
A system for dispensing material on a substrate includes a dispensing unit having a dispensing piston. The dispensing piston is pneumatically driven from a first lower position to a second upper position. The system further includes a solenoid valve coupled to the dispensing unit, with the solenoid valve being configured to control air flow to and from the dispensing piston. The solenoid valve includes a solenoid coil and an amplifier connected to the solenoid coil. The system further includes a controller coupled to the amplifier, with the controller being configured to generate a command signal to the amplifier to control current in the solenoid coil.
Abstract:
A stencil printer includes a frame, a stencil coupled to the frame, and a support assembly coupled to the frame, with the support assembly including tooling configured to support the electronic substrate in a print position beneath the stencil. The stencil printer further includes a print head assembly coupled to the frame in such a manner that the print head assembly is configured to traverse the stencil during print strokes. The print head assembly includes a squeegee blade assembly and at least one paste cartridge to deposit solder paste on the stencil. The stencil printer further includes an end effector configured to pick up and release items from a tooling tray. The stencil printer further includes a movable cart configured to interface with the stencil printer to deliver changeover and/or replacement items within a stencil printer.
Abstract:
A stencil printer includes a frame, a stencil coupled to the frame, and a support assembly coupled to the frame, with the support assembly including tooling configured to support the electronic substrate in a print position beneath the stencil. The stencil printer further includes a print head assembly coupled to the frame in such a manner that the print head assembly is configured to traverse the stencil during print strokes. The print head assembly includes a squeegee blade assembly and at least one paste cartridge to deposit solder paste on the stencil. The stencil printer further includes an end effector configured to pick up and release items from a tooling tray. The stencil printer further includes a movable cart configured to interface with the stencil printer to deliver changeover and/or replacement items within a stencil printer.
Abstract:
A dispenser includes a frame, a substrate support assembly, and a gantry system to move a dispensing pump in x-axis, y-axis, and z-axis directions. The dispensing pump includes a local supply reservoir, a dispensing nozzle, a first line to provide fluid communication between the local supply reservoir and the dispensing nozzle. The dispenser further includes a remote bulk feed system coupled to the local supply reservoir of the dispensing pump. The bulk feed system includes a first remote supply container configured to contain viscous material, a second line to provide fluid communication between the remote bulk feed system and the local supply reservoir, and a first valve disposed in the second line and operable to deliver viscous material to and to cut off viscous material from the remote supply container.
Abstract:
A dispenser, configured to dispense material on a substrate, includes a dispensing unit having a housing with a chamber, a piston disposed in the chamber and axially movable within the chamber, and a nozzle coupled to the housing. The nozzle has an orifice co-axial with the chamber of the housing. The dispenser further includes an actuator coupled to the dispensing unit and configured to drive the up- and down movement of the piston, and a compliant assembly coupled to the actuator and the piston. The compliant assembly is configured to permit limited relative travel between the actuator and the piston. A method of dispensing is further disclosed.
Abstract:
An apparatus includes a frame, a unit coupled to the frame and configured to deposit material on the electronic substrate, and a substrate support assembly coupled to the frame. The substrate support assembly is configured to support the electronic substrate. The substrate support assembly includes a worktable and a fixed support secured to the worktable. The fixed support extends from a first edge of the worktable to a second edge of the worktable. The substrate assembly further includes an adjustable support releasably secured to the worktable. The adjustable support extends from the first edge to the second edge and spaced from the fixed support. The substrate assembly further includes at least one guide mechanism configured to releasably secure the adjustable support in place on the worktable.
Abstract:
A dispensing system includes an optional pre-heat station configured to receive an electronic substrate, a dispense station configured to dispense material on the electronic substrate received from the optional pre-heat station, an optional post-heat station configured to receive the electronic substrate from the dispense station, and a non-contact sensor positioned above the electronic substrate on at least one of the optional pre-heat station, the dispense station, and the optional post-heat station.
Abstract:
A dispensing system includes a frame, a support, a dispensing unit assembly, and a gantry. The gantry is configured to support the dispensing unit assembly and to move the dispensing unit assembly in x-axis and y-axis directions. The dispensing unit assembly includes a support bracket secured to the gantry and a movable bracket rotatably coupled to the support bracket configured to enable the rotation of the movable bracket with respect to the support bracket about a first axis, with a dispensing unit rotatably coupled to the movable bracket configured to enable the rotation of the dispensing unit with respect to the movable bracket about a second axis generally perpendicular to the first axis. A mass dampener assembly is coupled to the movable bracket, with the mass dampener assembly being configured to reduce vibration of the dispensing unit during operation.