Valve-Less Mixing Method and Mixing Device
    1.
    发明申请

    公开(公告)号:US20180311627A1

    公开(公告)日:2018-11-01

    申请号:US15740257

    申请日:2016-06-28

    Inventor: Ahmed Taher

    Abstract: A fluidic device for mixing a reagent fluid with a fluid sample comprises a supply channel having a reagent inlet, a sample inlet and a first reagent storage, coupled to the supply channel; a mixer for mixing the reagent with the fluid sample, having a mixer inlet coupled to the supply channel at a position in between the sample inlet and the first reagent storage; In a first stage, when the reagent fluid is supplied in the reagent inlet, the reagent is provided in the supply channel and the first reagent storage, and such that the reagent is thereafter stationed in the supply channel and the first reagent storage until a fluid sample is provided in the sample inlet. When the fluid sample is supplied in the sample inlet, the supplied fluid sample and the stationed reagent flows into the mixer thereby mixing both fluids.

    Flow Control System for a Microfluidic Device, Microreactor System, DNA Synthesis Device, and Method for Controlling a Sequence of Reactions

    公开(公告)号:US20220032305A1

    公开(公告)日:2022-02-03

    申请号:US17390397

    申请日:2021-07-30

    Applicant: IMEC VZW

    Abstract: A flow control system for a microfluidic device includes: a plurality of fluid flow controllers, each fluid flow controller associated with a respective microfluidic device inlet of the microfluidic device, and wherein each fluid flow controller includes: a controller inlet for receiving a fluid flow, a first fluid channel and a second fluid channel, each of the first and the second fluid channels having a first end connected to the controller inlet and a second end connected to a supply channel, and a valve for selecting the fluid flow to be passed from the controller inlet to the first fluid channel or to the second fluid channel, wherein the first fluid channel has a first flow resistance that smaller than a second flow resistance of the second fluid channel.

    Valve-less mixing method and mixing device

    公开(公告)号:US10537862B2

    公开(公告)日:2020-01-21

    申请号:US15740257

    申请日:2016-06-28

    Inventor: Ahmed Taher

    Abstract: A fluidic device for mixing a reagent fluid with a fluid sample comprises a supply channel having a reagent inlet, a sample inlet and a first reagent storage, coupled to the supply channel; a mixer for mixing the reagent with the fluid sample, having a mixer inlet coupled to the supply channel at a position in between the sample inlet and the first reagent storage; In a first stage, when the reagent fluid is supplied in the reagent inlet, the reagent is provided in the supply channel and the first reagent storage, and such that the reagent is thereafter stationed in the supply channel and the first reagent storage until a fluid sample is provided in the sample inlet. When the fluid sample is supplied in the sample inlet, the supplied fluid sample and the stationed reagent flows into the mixer thereby mixing both fluids.

    Microfluidic device
    4.
    发明授权

    公开(公告)号:US12201976B2

    公开(公告)日:2025-01-21

    申请号:US17127985

    申请日:2020-12-18

    Applicant: IMEC VZW

    Abstract: A microfluidic device (100) comprises: a reaction chamber (102); at least a first and a second supply channel (110a, 110b) for allowing transport of a first fluid and a second fluid, respectively, from a fluid supply source (112a, 112b) into the reaction chamber (102), wherein each of the first and the second supply channels (110a, 110b) comprises a side drain (114a, 114b) connected to the supply channel (110a, 110b) between the fluid supply source (112a, 112b) and the reaction chamber (102), wherein the side drain (114a, 114b) is configured to prevent undesired diffusion of the fluid in the supply channel (110a, 110b) into the reaction chamber (102); at least a first and a second outlet (120a, 120b) connected to the reaction chamber (102) for allowing transport of fluid from the reaction chamber (102), wherein the first and second outlets (120a, 120b) have different dimensions to provide different hydraulic resistance.

    Addressable micro-reaction chamber array

    公开(公告)号:US12145123B2

    公开(公告)日:2024-11-19

    申请号:US17416465

    申请日:2019-12-16

    Abstract: The present invention provides a micro-reactor (1) adapted to host chemical reactions having at least one microfluidic layer, said micro-reactor (1) comprising a fluid inlet (2) and a fluid outlet (3); a plurality of micro-reaction chambers (10) arranged in rows (7) and columns (6), each micro-reaction chamber comprising a chamber inlet (10a) and a chamber outlet (10b); a plurality of supply channels (4) for supplying fluid to from said fluid inlet (2) to said micro-reaction chambers (10) and further arranged for draining said micro-reaction chambers (10) to said fluid outlet (3), said supply channels (10) extending in a first direction (D1) along the columns (6) of micro-reaction chambers (10) and arranged such that there is one supply channel (4) between adjacent columns (6). The micro-reaction chambers (10) in the columns (6) are arranged such that the chamber inlets (10a) of a column are in fluid contact with the same supply channel (4) and the chamber outlets (10b) are in fluid contact with the supply channel (4) adjacent to the supply channel (4) arranged in fluidic contact with the chamber inlets (10a). Further, the plurality of supply channels (4) comprises a first end supply channel (4a) arranged for supplying fluid to a first end column (6a) of the micro-reaction chambers (10) and a second end supply channel (4b) arranged for draining fluid from the second, opposite, end column (6b) of said micro-reaction chambers (10); and wherein the micro-reactor (1) further comprises at least one reagent inlet (8) in fluid contact with the first end supply channel 4a and a reagent outlet (9) in fluid contact with the second end supply channel such that reagents introduced to the at least one reagent inlet (8) fill the plurality of micro-reaction chambers (10) in a second direction (D2) along the rows (7) of micro-reaction chambers (10) to the reagent outlet (9).

Patent Agency Ranking