Single-stage small-sample-object detection method based on decoupled metric

    公开(公告)号:US11205098B1

    公开(公告)日:2021-12-21

    申请号:US17373831

    申请日:2021-07-13

    Abstract: A single-stage small-sample-object detection method based on decoupled metric is provided to solve the following problems: low detection accuracy of existing small-sample-object detection methods, the mutual interference between classification and regression in a non-decoupled form, and over-fitting during training of a detection network in case of small samples. The method includes: obtaining a to-be-detected image as an input image; and obtaining a class and a regression box corresponding to each to-be-detected object in the input image through a pre-constructed small-sample-object detection network DMNet, where the DMNet includes a multi-scale feature extraction network, a decoupled representation transformation module, an image-level distance metric learning module and a regression box prediction module. The new method avoids the over-fitting during training of the detection network, eliminates the mutual interference between the classification branch and the regression branch, and improves the accuracy of small-sample-object detection.

    Biomimetic robotic manta ray
    2.
    发明授权

    公开(公告)号:US11161578B2

    公开(公告)日:2021-11-02

    申请号:US17278335

    申请日:2020-04-16

    Abstract: A biomimetic robotic manta ray includes a head cabin, a central cabin, a pair of pectoral fins and a caudal fin cabin. The pectoral fin includes a crank-rocker mechanism and a bevel gear mechanism. The biomimetic robotic manta ray achieves undulatory propulsion through a coordinated periodic motion of the crank-rocker mechanism. A complex closed motion trail of the tail end of the pectoral fin of the manta ray is traced through the coordination of the bevel gear mechanism and the crank-rocker mechanism. The biomimetic robotic manta ray achieves a combined motion of two vertical undulations superimposed on the pectoral fin of a natural manta ray. The motion trail, which has an important effect on the efficient motion of the manta ray, of the tail end of the pectoral fin is approximately simulated.

Patent Agency Ranking