Abstract:
A data processing system (DPS) supports exchange of digital keys. The DPS comprises a communication module which, when executed by the DPS, is operable to receive, via multiple different network routes, multiple copies of a seed message from a second DPS, as part of a Diffie-Hellman key exchange process with the second DPS, wherein each copy of the seed message includes a seed value. The DPS also comprises a security module which, when executed by the DPS, is operable to perform operations comprising (a) determining a prevalent seed value, based on the multiple copies of the seed message; (b) computing a prevalence metric to indicate how many of the seed messages contained the prevalent seed value; and (c) determining whether a seed exchange portion of the Diffie-Hellman key exchange process has been successfully performed, based on the prevalence metric. Other embodiments are described and claimed.
Abstract:
In one embodiment, a method includes: presenting, in a user interface of an authoring tool, a plurality of levels of abstraction for a network having a plurality of devices; receiving information from a user regarding a subset of the plurality of devices to be provisioned with one or more security keys and an access control policy; automatically provisioning a key schedule for the subset of the plurality of devices in the network based on the user input and a topological context of the network; and automatically provisioning the access control policy for the subset of the plurality of devices in the network based on the user input and the topological context of the network.
Abstract:
This disclosure is directed to privacy enforcement via localized personalization. An example device may comprise at least a user interface to present content. A message may be received into a trusted execution environment (TEE) situated within the device or remotely, the message including at least metadata and content. The TEE may determine relevance of the content to a user based on the metadata and user data. Based on the relevance, the TEE may cause the content to be presented to the user via the user interface. In one embodiment, the TEE may be able to personalize the content based on the user data prior to presentation. If the content includes an offer, the TEE may also be able to present counteroffers to the user based on user interaction with the content. The TEE may also be able to cause feedback data to be transmitted to at least the content provider.