-
公开(公告)号:US20220114825A1
公开(公告)日:2022-04-14
申请号:US17408094
申请日:2021-08-20
Applicant: Intel Corporation
Inventor: Anbang Yao , Yun Ren , Hao Zhao , Tao Kong , Yurong Chen
Abstract: An example apparatus for mining multi-scale hard examples includes a convolutional neural network to receive a mini-batch of sample candidates and generate basic feature maps. The apparatus also includes a feature extractor and combiner to generate concatenated feature maps based on the basic feature maps and extract the concatenated feature maps for each of a plurality of received candidate boxes. The apparatus further includes a sample scorer and miner to score the candidate samples with multi-task loss scores and select candidate samples with multi-task loss scores exceeding a threshold score.
-
公开(公告)号:US11120314B2
公开(公告)日:2021-09-14
申请号:US16491735
申请日:2017-04-07
Applicant: INTEL CORPORATION
Inventor: Anbang Yao , Yun Ren , Hao Zhao , Tao Kong , Yurong Chen
Abstract: An example apparatus for mining multi-scale hard examples includes a convolutional neural network to receive a mini-batch of sample candidates and generate basic feature maps. The apparatus also includes a feature extractor and combiner to generate concatenated feature maps based on the basic feature maps and extract the concatenated feature maps for each of a plurality of received candidate boxes. The apparatus further includes a sample scorer and miner to score the candidate samples with multi-task loss scores and select candidate samples with multi-task loss scores exceeding a threshold score.
-
公开(公告)号:US11790631B2
公开(公告)日:2023-10-17
申请号:US17408094
申请日:2021-08-20
Applicant: Intel Corporation
Inventor: Anbang Yao , Yun Ren , Hao Zhao , Tao Kong , Yurong Chen
IPC: G06V10/00 , G06V10/44 , G06N3/04 , G06N3/08 , G06V30/24 , G06F18/243 , G06V30/19 , G06V10/82 , G06V20/70 , G06V20/10
CPC classification number: G06V10/454 , G06F18/24317 , G06N3/04 , G06N3/08 , G06V10/82 , G06V20/10 , G06V20/70 , G06V30/19173 , G06V30/2504
Abstract: An example apparatus for mining multi-scale hard examples includes a convolutional neural network to receive a mini-batch of sample candidates and generate basic feature maps. The apparatus also includes a feature extractor and combiner to generate concatenated feature maps based on the basic feature maps and extract the concatenated feature maps for each of a plurality of received candidate boxes. The apparatus further includes a sample scorer and miner to score the candidate samples with multi-task loss scores and select candidate samples with multi-task loss scores exceeding a threshold score.
-
公开(公告)号:US11244191B2
公开(公告)日:2022-02-08
申请号:US16070483
申请日:2016-02-17
Applicant: INTEL CORPORATION
Inventor: Anbang Yao , Tao Kong , Yurong Chen
Abstract: Region proposal is described for image regions that include objects of interest. Feature maps from multiple layers of a convolutional neural network model are used. In one example a digital image is received and buffered. Layers of convolution are performed on the image to generate feature maps. The feature maps are reshaped to a single size. The reshaped feature maps are grouped by sequential concatenation to form a combined feature map. Region proposals are generated using the combined feature map by scoring bounding box regions of the image. Objects are detected and classified objects in the proposed regions using the feature maps.
-
公开(公告)号:US11188794B2
公开(公告)日:2021-11-30
申请号:US16630419
申请日:2017-08-10
Applicant: INTEL CORPORATION
Inventor: Anbang Yao , Tao Kong , Ming Lu , Yiwen Guo , Yurong Chen
Abstract: A convolutional neural network framework is described that uses reverse connection and obviousness priors for object detection. A method includes performing a plurality of layers of convolutions and reverse connections on a received image to generate a plurality of feature maps, determining an objectness confidence for candidate bounding boxes based on outputs of an objectness prior, determining a joint loss function for each candidate bounding box by combining an objectness loss, a bounding box regression loss and a classification loss, calculating network gradients over positive boxes and negative boxes, updating network parameters within candidate bounding boxes using the joint loss function, repeating performing the convolutions through to updating network parameters until the training converges, and outputting network parameters for object detection based on the training images.
-
公开(公告)号:US12154309B2
公开(公告)日:2024-11-26
申请号:US18462305
申请日:2023-09-06
Applicant: Intel Corporation
Inventor: Anbang Yao , Yun Ren , Hao Zhao , Tao Kong , Yurong Chen
IPC: G06V10/00 , G06F18/243 , G06N3/04 , G06N3/08 , G06V10/44 , G06V10/82 , G06V20/10 , G06V20/70 , G06V30/19 , G06V30/24
Abstract: An example apparatus for mining multi-scale hard examples includes a convolutional neural network to receive a mini-batch of sample candidates and generate basic feature maps. The apparatus also includes a feature extractor and combiner to generate concatenated feature maps based on the basic feature maps and extract the concatenated feature maps for each of a plurality of received candidate boxes. The apparatus further includes a sample scorer and miner to score the candidate samples with multi-task loss scores and select candidate samples with multi-task loss scores exceeding a threshold score.
-
公开(公告)号:US20240013506A1
公开(公告)日:2024-01-11
申请号:US18462305
申请日:2023-09-06
Applicant: Intel Corporation
Inventor: Anbang Yao , Yun Ren , Hao Zhao , Tao Kong , Yurong Chen
IPC: G06V10/44 , G06N3/04 , G06N3/08 , G06V30/24 , G06F18/243 , G06V30/19 , G06V10/82 , G06V20/70 , G06V20/10
CPC classification number: G06V10/454 , G06N3/04 , G06N3/08 , G06V30/2504 , G06F18/24317 , G06V30/19173 , G06V10/82 , G06V20/70 , G06V20/10
Abstract: An example apparatus for mining multi-scale hard examples includes a convolutional neural network to receive a mini-batch of sample candidates and generate basic feature maps. The apparatus also includes a feature extractor and combiner to generate concatenated feature maps based on the basic feature maps and extract the concatenated feature maps for each of a plurality of received candidate boxes. The apparatus further includes a sample scorer and miner to score the candidate samples with multi-task loss scores and select candidate samples with multi-task loss scores exceeding a threshold score.
-
公开(公告)号:US20210133518A1
公开(公告)日:2021-05-06
申请号:US16491735
申请日:2017-04-07
Applicant: INTEL CORPORATION
Inventor: Anbang Yao , Yun Ren , Hao Zhao , Tao Kong , Yurong Chen
Abstract: An example apparatus for mining multi-scale hard examples includes a convolutional neural network to receive a mini-batch of sample candidates and generate basic feature maps. The apparatus also includes a feature extractor and combiner to generate concatenated feature maps based on the basic feature maps and extract the concatenated feature maps for each of a plurality of received candidate boxes. The apparatus further includes a sample scorer and miner to score the candidate samples with multi-task loss scores and select candidate samples with multi-task loss scores exceeding a threshold score.
-
-
-
-
-
-
-