-
公开(公告)号:US11525775B2
公开(公告)日:2022-12-13
申请号:US17750868
申请日:2022-05-23
IPC分类号: G01N21/3581
摘要: A system for biomolecule identification by terahertz sensing, an asymmetric triple split-rectangular (ATSR) metamaterial biosensor, and a method for biomolecule identification by terahertz sensing are presented. The asymmetric triple split-rectangular (ATSR) metamaterial biosensor includes three gap areas which highly confine an electric field. The biosensor includes an E-shaped structure facing an inverted E-shaped structure with gaps between the respective legs. Each leg has a specially designed extension on either side which increases the electric field. A terahertz laser interrogates an analyte upon the metamaterial structure with a plurality of frequencies. The amplitude difference is estimated by an amplitude difference referencing technique. The amplitude difference is matched to a database record to identify the biomolecule analyte. The asymmetric triple split-rectangular (ATSR) metamaterial biosensor in combination with the amplitude difference referencing technique detects the type of biomolecule with a high degree of accuracy and requires only small analyte samples with sub-micron thicknesses.
-
公开(公告)号:US11662308B2
公开(公告)日:2023-05-30
申请号:US18056299
申请日:2022-11-17
IPC分类号: G01N21/3581
CPC分类号: G01N21/3581
摘要: A system for biomolecule identification by terahertz sensing, an asymmetric triple split-rectangular (ATSR) metamaterial biosensor, and a method for biomolecule identification by terahertz sensing are presented. The asymmetric triple split-rectangular (ATSR) metamaterial biosensor includes three gap areas which highly confine an electric field. The biosensor includes an E-shaped structure facing an inverted E-shaped structure with gaps between the respective legs. Each leg has a specially designed extension on either side which increases the electric field. A terahertz laser interrogates an analyte upon the metamaterial structure with a plurality of frequencies. The amplitude difference is estimated by an amplitude difference referencing technique. The amplitude difference is matched to a database record to identify the biomolecule analyte. The asymmetric triple split-rectangular (ATSR) metamaterial biosensor in combination with the amplitude difference referencing technique detects the type of biomolecule with a high degree of accuracy and requires only small analyte samples with sub-micron thicknesses.
-
公开(公告)号:US11041802B2
公开(公告)日:2021-06-22
申请号:US16416926
申请日:2019-05-20
IPC分类号: G01N21/3581
摘要: A system for biomolecule identification by terahertz sensing, an asymmetric triple split-rectangular (ATSR) metamaterial biosensor, and a method for biomolecule identification by terahertz sensing are presented. The asymmetric triple split-rectangular (ATSR) metamaterial biosensor includes three gap areas which highly confine an electric field. The biosensor includes an E-shaped structure facing an inverted E-shaped structure with gaps between the respective legs. Each leg has a specially designed extension on either side which increases the electric field. A terahertz laser interrogates an analyte upon the metamaterial structure with a plurality of frequencies. The amplitude difference is estimated by an amplitude difference referencing technique. The amplitude difference is matched to a database record to identify the biomolecule analyte. The asymmetric triple split-rectangular (ATSR) metamaterial biosensor in combination with the amplitude difference referencing technique detects the type of biomolecule with a high degree of accuracy and requires only small analyte samples with sub-micron thicknesses.
-
公开(公告)号:US11841321B1
公开(公告)日:2023-12-12
申请号:US18317281
申请日:2023-05-15
IPC分类号: G01N21/3581
CPC分类号: G01N21/3581
摘要: A system for biomolecule identification by terahertz sensing, an asymmetric triple split-rectangular (ATSR) metamaterial biosensor, and a method for biomolecule identification by terahertz sensing are presented. The asymmetric triple split-rectangular (ATSR) metamaterial biosensor includes three gap areas which highly confine an electric field. The biosensor includes an E-shaped structure facing an inverted E-shaped structure with gaps between the respective legs. Each leg has a specially designed extension on either side which increases the electric field. A terahertz laser interrogates an analyte upon the metamaterial structure with a plurality of frequencies. The amplitude difference is estimated by an amplitude difference referencing technique. The amplitude difference is matched to a database record to identify the biomolecule analyte. The asymmetric triple split-rectangular (ATSR) metamaterial biosensor in combination with the amplitude difference referencing technique detects the type of biomolecule with a high degree of accuracy and requires only small analyte samples with sub-micron thicknesses.
-
5.
公开(公告)号:US20200371022A1
公开(公告)日:2020-11-26
申请号:US16416926
申请日:2019-05-20
IPC分类号: G01N21/3581
摘要: A system for biomolecule identification by terahertz sensing, an asymmetric triple split-rectangular (ATSR) metamaterial biosensor, and a method for biomolecule identification by terahertz sensing are presented. The asymmetric triple split-rectangular (ATSR) metamaterial biosensor includes three gap areas which highly confine an electric field. The biosensor includes an E-shaped structure facing an inverted E-shaped structure with gaps between the respective legs. Each leg has a specially designed extension on either side which increases the electric field. A terahertz laser interrogates an analyte upon the metamaterial structure with a plurality of frequencies. The amplitude difference is estimated by an amplitude difference referencing technique. The amplitude difference is matched to a database record to identify the biomolecule analyte. The asymmetric triple split-rectangular (ATSR) metamaterial biosensor in combination with the amplitude difference referencing technique detects the type of biomolecule with a high degree of accuracy and requires only small analyte samples with sub-micron thicknesses.
-
-
-
-