Abstract:
The embodiments of the present invention provide a computer-implemented method and system for translating user keywords into semantic queries based on domain vocabulary. The system receives the user keywords and search for the concepts. The concepts are transformed into a connected graph. The user keywords are translated into precise access paths based on the information relationship described in conceptual entity relationship models and then converts these paths into logic based queries. It bridges the semantic gap between user keywords and logic based structured queries. It enables users to interact with the semantic system by articulating the information in a structured query language. It improves the relevance of search results by incorporating semantic technology to drive the mechanics of the search solution.
Abstract:
A system and method combining supervised and unsupervised natural language processing to extract keywords from text in natural language processing, the method includes receiving, through a processor, one or more entities through an input processing unit and converting the one or more entities into a standard document object. Further, parsing the standard document object through a text processing engine into one or more of a sentence and a token and selecting through a candidate identification engine one or more right candidates to be ranked. Further, assigning one or more scores to the one or more right candidates, ranking the one or more right candidates through a graph based ranking engine, creating a connected graph between the ranked one or more right candidates and assigning, through a phrase embedding engine, an edge weight to one or more edges between a right candidate and another right candidate.
Abstract:
A system and method combining supervised and unsupervised natural language processing to extract keywords from text in natural language processing, the method includes receiving, through a processor, one or more entities through an input processing unit and converting the one or more entities into a standard document object. Further, parsing the standard document object through a text processing engine into one or more of a sentence and a token and selecting through a candidate identification engine one or more right candidates to be ranked. Further, assigning one or more scores to the one or more right candidates, ranking the one or more right candidates through a graph based ranking engine, creating a connected graph between the ranked one or more right candidates and assigning, through a phrase embedding engine, an edge weight to one or more edges between a right candidate and another right candidate.
Abstract:
A method and system automates training named entity recognition in natural language processing to build configurable entity definitions includes receiving input documents or entities through an administration module and defining a domain for each entity. Further, one or more entities corresponding to the domain specific entity in the received documents are determined and a training file to one of pick a right parser, extract content and label the entity ambiguity is generated. One or more user actions are collected and maintained at a repository through a knowledge engine. Still further, one or more labelled ambiguous words are predicted and the knowledge engine is updated. Data may be fetched, through a training pipeline execution engine and each entity may be associated with one or more documents based on the fetched data from the document store to build configurable entity definitions.
Abstract:
The embodiments of the present invention provide a computer-implemented method and system for translating user keywords into semantic queries based on domain vocabulary. The system receives the user keywords and search for the concepts. The concepts are transformed into a connected graph. The user keywords are translated into precise access paths based on the information relationship described in conceptual entity relationship models and then converts these paths into logic based queries. It bridges the semantic gap between user keywords and logic based structured queries. It enables users to interact with the semantic system by articulating the information in a structured query language. It improves the relevance of search results by incorporating semantic technology to drive the mechanics of the search solution.
Abstract:
A method and system automates training named entity recognition in natural language processing to build configurable entity definitions includes receiving input documents or entities through an administration module and defining a domain for each entity. Further, one or more entities corresponding to the domain specific entity in the received documents are determined and a training file to one of pick a right parser, extract content and label the entity ambiguity is generated. One or more user actions are collected and maintained at a repository through a knowledge engine. Still further, one or more labelled ambiguous words are predicted and the knowledge engine is updated. Data may be fetched, through a training pipeline execution engine and each entity may be associated with one or more documents based on the fetched data from the document store to build configurable entity definitions.