Abstract:
This disclosure relates to offloading processing intensive tasks in communication protocol specific operations off the device, e.g. to another network node connected to the device via a network. Such tasks may for example include flow control, segmentation/desegmentation, and/or error control. As part of error control, protocols of the transport protocol layer of the OSI protocol stack may include checksum calculation to ensure reliability of the (payload) data. The calculation of checksums may be processing intensive. For this reason, example client nodes that realize the offloading of processing intensive tasks in communication protocol specific operations to another network node may not utilize any transport layer protocol at all, but rely on flow control and error control implemented in most modern data link layer protocols (Layer 2 of the OSI protocol stack). Accordingly, the processing intensive tasks can be “shifted” from the client device to another device.
Abstract:
A vehicle for variably sized transportation may include a vehicle basis and exterior elements coupled to the vehicle basis. At least some exterior elements may be collapsible or movably coupled to the vehicle basis at a first set of positions or a first set of extended or collapsed states to form a first operational configuration, or at a second set of positions or a second set of extended or collapsed states to form a second operational configuration. The first or second operational configuration may provide for a first or second shadow and a first or second passenger or cargo space for the vehicle. The first and second shadows and the first and second passenger or cargo spaces may differ in at least their longitudinal dimensions or in latitudinal dimensions. Other embodiments may also be described and claimed.
Abstract:
A cable modem with an embedded video transmitter for supporting all-IP end-to-end services in a cable network is disclosed. A cable modem is provided with a video converter/modulator feature. The cable modem receives Internet protocol (IP) packets carrying video streams from a network. A video extractor in the cable modem extracts video packets from the IP packets, and a video modulator in the cable modem modulates the extracted video packets per video format supported by a customer premise equipment (CPE). The cable modem then sends the modulated video packets to the CPE. With this feature, all-IP end-to-end services may be implemented without being dependent on an existing CPE's capability for supporting IP at the customer premises.
Abstract:
In an embodiment, an apparatus comprises a secure storage to store an entry having an identifier of a device to be paired with the apparatus and a master key shared between the apparatus and the device, and a connection logic to enable the apparatus to be securely connected to the device according to a connection protocol in which the device is authenticated based on the identifier received from the device and the master key. Other embodiments are described and claimed.
Abstract:
A system that utilizes data over cable service interface specification (DOCSIS) over passive optical networks is disclosed. An example system includes core system in a passive optical network (PON), comprising a memory; and one or more processors configured to generate a downlink (DL) data stream comprising optical signals, in compliance with a data over cable service interface specification (DOCSIS); and provide the optical signals containing DL data to a network component in the PON over an optical fiber coupled between the core system and the network component. In some embodiments, the core system is located at a head end equipment at the internet service provider's facility. However, in other embodiments, the core system can have a distributed architecture, with a part of the core system located at the internet service provider's facility and a different part of the core system located at a different location.
Abstract:
In embodiments, an apparatus for safety collaboration in autonomous or semi-autonomous vehicles may include an input interface to obtain sensor data from one or more sensors of a computer-assisted or autonomous driving (CA/AD) vehicle, an output interface, and an analyzer coupled to the input and output interfaces to process the sensor data to identify an emergency condition of the CA/AD vehicle, and in response to the identified emergency condition, cause a communication interface of the CA/AD vehicle, via the output interface, to broadcast a request for assistance to be received by one or more nearby CA/AD vehicles. In embodiments, the apparatus may be disposed in the CA/AD vehicle.
Abstract:
A system that utilizes data over cable service interface specification (DOCSIS) over passive optical networks is disclosed. An example system includes core system in a passive optical network (PON), comprising a memory; and one or more processors configured to generate a downlink (DL) data stream comprising optical signals, in compliance with a data over cable service interface specification (DOCSIS); and provide the optical signals containing DL data to a network component in the PON over an optical fiber coupled between the core system and the network component. In some embodiments, the core system is located at a head end equipment at the internet service provider's facility. However, in other embodiments, the core system can have a distributed architecture, with a part of the core system located at the internet service provider's facility and a different part of the core system located at a different location.
Abstract:
Methods, systems, apparatus and articles of manufacture are disclosed to secure devices. An example disclosed apparatus includes a platform detector to determine when the device is within a threshold proximity to a platform, a device locking manager to initiate a locking service for the device when within the threshold proximity, and a device tampering manager to initiate a tampering remedy in response to detecting an indication of tampering.
Abstract:
This disclosure relates to offloading processing intensive tasks in communication protocol specific operations off the device, e.g. to another network node connected to the device via a network. Such tasks may for example include flow control, segmentation/desegmentation, and/or error control. As part of error control, protocols of the transport protocol layer of the OSI protocol stack may include checksum calculation to ensure reliability of the (payload) data. The calculation of checksums may be processing intensive. For this reason, example client nodes that realize the offloading of processing intensive tasks in communication protocol specific operations to another network node may not utilize any transport layer protocol at all, but rely on flow control and error control implemented in most modern data link layer protocols (Layer 2 of the OSI protocol stack). Accordingly, the processing intensive tasks can be “shifted” from the client device to another device.
Abstract:
Systems and methods may detect a condition with respect to a first device and generate a distress signal if the condition satisfies one or more safety criteria that are relevant to a second device. Additionally, the distress signal may be broadcasted, wherein the distress signal bypasses one or more application controls of the first device and has a transmission range that is restricted to a local area. In one example, one or more local preventive actions may be triggered, via the application control(s), based on the distress signal.