Abstract:
An organic electroluminescent unit is provided with a plurality of organic electroluminescent elements. At least one of the organic electroluminescent elements includes, in order, a first electrode, a hole transport layer, a light-emitting layer, an electron transport layer, and a second electrode. The hole transport layer, the light-emitting layer, and the electron transport layer satisfy the following expressions: ΔEg(T1)≥0 eV ΔEg(T1)=ETa+ETb−2×ETEML where ETa represents a T1 level of the hole transport layer, ETb represents a T1 level of the electron transport layer, and ETEML represents a T1 level of the light-emitting layer.
Abstract:
An organic electroluminescence device includes, in order, a first electrode, a hole transport layer, an organic light-emitting layer, an electron transport layer, and a second electrode. The hole transport layer is configured by a coated film. The organic light-emitting layer is configured by a coated film. The organic light-emitting layer is made of an organic light-emitting material that has a molecular orientation degree specified by a parameter S′. The parameter S′ satisfies an inequality: 0.66
Abstract:
An organic electroluminescent (EL) element includes: a first electrode; an interlayer formed above the first electrode; an organic light-emitting layer formed using the interlayer as a foundation; and a second electrode formed above the organic light-emitting layer. The organic light-emitting layer contains at least a host material and a dopant material. The interlayer is formed using a material which has an energy gap larger than an energy gap of the dopant material and a highest occupied molecular orbital (HOMO) level deeper than a HOMO level of the dopant material.
Abstract:
An organic EL display panel includes light-reflective electrodes, a first red light-emitting layer, a green light-emitting layer, a first blue light-emitting layer, a second red light-emitting layer, a charge generating layer, a second blue light-emitting layer, and a light-transmissive electrode. In a red and a white sub-pixel region, a first optical length is from 20 nm to 50 nm, and a second optical length is from 210 nm to 230 nm. In a green sub-pixel region, the first optical length is from 20 nm to 50 nm, and the second optical length is from 240 nm to 295 nm. In a blue sub-pixel region, the first optical length is from 20 nm to 60 nm, and the second optical length is from 195 nm to 205 nm.
Abstract:
A display device includes: a luminance converter which converts input gradation value into a corresponding target luminance value; a luminance correction calculator which calculates output gradation value from the target luminance value using efficiency residual ratio representing a deterioration degree of a light-emitting element, and calculates a corrected luminance value therefrom; a current stress calculator which converts current stress amount on a light-emitting element calculated from the corrected luminance value into current stress amount when first reference current flows through the light-emitting element, and accumulates this to calculate an accumulated first stress amount; a CB stress calculator which converts CB stress amount on the light-emitting element into current stress amount when second reference current flows through the light-emitting element, and accumulates this to calculate an accumulated second stress amount; and an efficiency residual ratio calculator which updates the efficiency residual ratio, using the accumulated first and second stress amounts calculated.
Abstract:
An organic electroluminescence device includes, in order, a first electrode, a hole transport layer, an organic light-emitting layer, an electron transport layer, and a second electrode. The hole transport layer is configured by a coated film. The organic light-emitting layer is configured by a coated film. The organic light-emitting layer has a light emission region provided in the organic light-emitting layer on side of the electron transport layer.
Abstract:
An organic EL element includes: an anode; a light-emitting layer that is disposed above the anode; a first interlayer that is disposed on the light-emitting layer; a second interlayer that is disposed on the first interlayer; a functional layer that is disposed on the second interlayer; and a cathode that is disposed above the functional layer. The first interlayer includes a fluorine compound including a first metal that is an alkali metal or an alkaline-earth metal. The second interlayer includes a second metal that has a property of cleaving a bond between the first metal and fluorine in the fluorine compound. The functional layer has at least one of an electron transport property and an electron injection property. A thickness D1 of the first interlayer and a thickness D2 of the second interlayer satisfy 3%≦D2/D1≦25%.
Abstract:
A display device includes: a luminance converter which converts input gradation value into a corresponding target luminance value; a luminance correction calculator which calculates output gradation value from the target luminance value and calculates a corrected luminance value from the output gradation value, using an efficiency residual ratio which is an index representing the light-emitting element deterioration degree; a current stress calculator which converts current stress amount on the light-emitting element calculated from the corrected luminance value into current stress amount when reference current flows through the light-emitting element, and calculates the accumulated current stress amount; a temperature stress calculator which converts temperature stress amount on the light-emitting element under environmental temperature into temperature stress amount on the light-emitting element under reference temperature, and calculates the accumulated current stress amount; and an efficiency residual ratio calculator which updates the efficiency residual ratio, using the accumulated current and temperature stress amounts.
Abstract:
A display panel including a power supplying auxiliary electrode above the substrate in at least one gap among gaps between pixel electrodes in row and column directions, not in contact with the pixel electrodes, extending in the row and/or column direction. An intermediate layer is on or above light-emitting layers and the auxiliary electrode, and includes a fluoride of an alkali metal or an alkaline earth metal. A functional layer is on or above the intermediate layer, and includes an organic material that facilitates electron transport and/or facilitates electron injection and a rare earth metal dopant. A counter electrode is on or above the functional layer. Further, 1≤x≤3, 20≤y≤40, and y≥10x+10, where x is film thickness of the intermediate layer in nanometers, and y is percentage by weight of the rare earth metal dopant in the functional layer.
Abstract:
Disclosed is a self light-emitting element including a first electrode, a light-emitting layer disposed above the first electrode, a function layer disposed above the light-emitting layer, and doped with a metal, and a second electrode disposed above the function layer, in which the function layer has a multilayer structure of at least three layers including an uppermost layer, a lowermost layer, and an intermediate layer between the uppermost layer and the lowermost layer, and the intermediate layer is doped with the metal at a lower concentration than the uppermost layer and the lowermost layer.