摘要:
A method and system for response to ambient noise in implantable pulse generator. At least one cardiac signal is sensed with an implantable pulse generator. Cardiac depolarizations are identified in the at least one cardiac signal and cardiac depolarization markers are generated. The at least one cardiac signals are then analyzed for a noise event during a refractory period following the detected cardiac depolarization. The refractory period includes a noise window interval during which noise events are recognized. When a noise event, or events, occur during the noise window interval a first noise marker is generated. The noise window interval is then repeated as long as noise is detected in the noise window intervals. When the noise persists for a predetermined time interval a second noise marker is generated.
摘要:
An implantable pulse generator senses a cardiac signal, identifies cardiac events in the cardiac signal, and starts a blanking interval including a repeatable noise window blanking interval in response to each cardiac event. When noise is detected during the repeatable noise window blanking interval, the noise window blanking interval is repeated. In one embodiment, the duration of repeated repeatable noise window blanking intervals is summed and compared to a pacing escape interval. When the sum is greater than the pacing escape interval, asynchronous pacing pulses are delivered until the noise ceases. Alternatively, when the sum is greater than the pacing escape interval, the pace escape interval is repeated.
摘要:
Miniature defibrillators and cardioverters detect abnormal heart rhythms and automatically apply electrical therapy to restore normal heart function. Therapy decisions are typically based on the time between successive beats of various chambers of the heart, such as the left atrium and left ventricle. To prevent confusing a left ventricle beat for a left atrium beat, some devices use cross-chamber blanking, a technique which disables sensing of atrial beats for a certain time period after sensing. Conventionally, these devices lack any mechanism for adjusting length of this period. Accordingly, the inventor devised a implantable device including a mechanism for adjusting this time period. This mechanism ultimately allows tailoring of the cross-chamber blanking period to fit the needs of individual patients.
摘要:
An implantable pulse generator senses a cardiac signal, identifies cardiac events in the cardiac signal, and starts a blanking interval including a repeatable noise window blanking interval in response to each cardiac event. When noise is detected during the repeatable noise window blanking interval, the noise window blanking interval is repeated. In one embodiment, the duration of repeated repeatable noise window blanking intervals is summed and compared to a pacing escape interval. When the sum is greater than the pacing escape interval, asynchronous pacing pulses are delivered until the noise ceases. Alternatively, when the sum is greater than the pacing escape interval, the pace escape interval is repeated.
摘要:
An implantable pulse generator senses a cardiac signal, identifies cardiac events in the cardiac signal, and starts a blanking interval including a repeatable noise window blanking interval in response to each cardiac event. When noise is detected during the repeatable noise window blanking interval, the noise window blanking interval is repeated. In one embodiment, the duration of repeated repeatable noise window blanking intervals is summed and compared to a pacing escape interval. When the sum is greater than the pacing escape interval, asynchronous pacing pulses are delivered until the noise ceases. Alternatively, when the sum is greater than the pacing escape interval, the pace escape interval is repeated.
摘要:
Miniature defibrillators and cardioverters detect abnormal heart rhythms and automatically apply electrical therapy to restore normal heart function. Therapy decisions are typically based on the time between successive beats of various chambers of the heart, such as the left atrium and left ventricle. To prevent confusing a left ventricle beat for a left atrium beat, some devices use cross-chamber blanking, a technique which disables sensing of atrial beats for a certain time period after sensing. Conventionally, these devices lack any mechanism for adjusting length of this period. Accordingly, the inventor devised a implantable device including a mechanism for adjusting this time period. This mechanism ultimately allows tailoring of the cross-chamber blanking period to fit the needs of individual patients.
摘要:
An implantable pulse generator senses a cardiac signal, identifies cardiac events in the cardiac signal, and starts a blanking interval including a repeatable noise window blanking interval in response to each cardiac event. When noise is detected during the repeatable noise window blanking interval, the noise window blanking interval is repeated. In one embodiment, the duration of repeated repeatable noise window blanking intervals is summed and compared to a pacing escape interval. When the sum is greater than the pacing escape interval, asynchronous pacing pulses are delivered until the noise ceases. Alternatively, when the sum is greater than the pacing escape interval, the pace escape interval is repeated.
摘要:
An implantable pulse generator senses a cardiac signal, identifies cardiac events in the cardiac signal, and starts a blanking interval including a repeatable noise window blanking interval in response to each cardiac event. When noise is detected during the repeatable noise window blanking interval, the noise window blanking interval is repeated. In one embodiment, the duration of repeated repeatable noise window blanking intervals is summed and compared to a pacing escape interval. When the sum is greater than the pacing escape interval, asynchronous pacing pulses are delivered until the noise ceases. Alternatively, when the sum is greater than the pacing escape interval, the pace escape interval is repeated.
摘要:
An implantable pulse generator senses a cardiac signal, identifies cardiac events in the cardiac signal, and starts a blanking interval including a repeatable noise window blanking interval in response to each cardiac event. When noise is detected during the repeatable noise window blanking interval, the noise window blanking interval is repeated. In one embodiment, the duration of repeated repeatable noise window blanking intervals is summed and compared to a pacing escape interval. When the sum is greater than the pacing escape interval, asynchronous pacing pulses are delivered until the noise ceases. Alternatively, when the sum is greater than the pacing escape interval, the pace escape interval is repeated.
摘要:
An implantable pulse generator and a method of operation, where the pulse generator is adapted to sense at least a first cardiac signal. Cardiac events are identified in the first cardiac signal, in response to which a blanking interval is started. The blanking interval includes a repeatable noise window blanking interval. When noise is detected during the repeatable noise window blanking interval, the noise window blanking interval is repeated. Depending upon the type of sensed cardiac event (paced or intrinsic) the blanking interval is adjusted to either to a first overall duration or a second overall duration. The second overall duration includes a first timed interval that has a programmable value. The repeatable noise window blanking interval starts after the first timed interval of the second overall duration. The duration of repeated repeatable noise window blanking intervals is summed and compared to a pacing escape interval. When the sum is greater than the pacing escape interval, asynchronous pacing pulses are delivered. When the noise ceases, so does the delivery of asynchronous pacing pulses. Alternatively, when the sum is greater than the pacing escape interval, the pace escape interval is repeated. Pacing is resumed after one pacing escape interval after the noise signal ceases.