摘要:
An overmolded multi-port optical connection terminal for a fiber optic distribution cable includes a tether cable containing a plurality of optical fibers optically connected to a corresponding plurality of optical fibers terminated from the fiber optic distribution cable at a first end of the tether cable, an overmolded housing a the second end of the tether cable, at least one connector port, and plenum means for accommodating excess fiber length (EFL) caused by shrinkage of the tether cable and/or pistoning of the optical fibers of the tether cable during connector mating. In one embodiment, a centralized plenum means is defined by an internal cavity within the overmolded housing sufficient for accommodating the EFL without micro bending. In another embodiment, a distributed plenum means is defined by an oversized tubular portion of the tether cable having an inner diameter sufficient for accommodating the EFL without micro bending.
摘要:
A factory prepared fiber optic distribution cable has at least one predetermined access location for providing access to at least one pre-connectorized optical fiber. The fiber optic distribution cable includes at least one preterminated optical fiber withdrawn from a tubular body at the access location, a connector attached to the preterminated optical fiber, a transition piece for transitioning the preterminated optical fiber from the tubular body into a protective tube, and a protective shell encapsulating the access location for protecting the pre-connectorized optical fiber. Alternatively, the fiber optic distribution cable includes at least one preterminated optical fiber withdrawn from a tubular body, a transition piece for transitioning the preterminated optical fiber from the tubular body into a protective tube, a connector attached to the preterminated optical fiber, a plurality of cable centralizers, and a protective shell for encapsulating the access location and protecting the pre-connectorized optical fiber.
摘要:
An interconnection enclosure comprising at least one connector port operable for receiving a connector pair and a preterminated optical connector received in the at least one connector port, wherein the preterminated optical connector is adapted to be withdrawn from the exterior of the enclosure without entering the enclosure. The enclosure further comprising a tether means, a bend radius control means and a sealing means. An interconnection enclosure comprised of two halves held together by a fastening means, the enclosure defining an end wall and defining at least one connector port opening through the end wall for receiving a preterminated optical connector, the enclosure housing further defining an opening for receiving a distribution cable extending therethrough, wherein the preterminated optical connector is adapted to be withdrawn from the exterior of the enclosure without entering the enclosure.
摘要:
A fiber optic cable assembly comprising a first fiber optic cable having pre-selected optical fibers pre-terminated and branched at a cable access point, a second cable optically connected to the pre-terminated optical fibers, and a flexible body encapsulating the cable access point. A method for manufacturing a fiber optic cable assembly comprising providing a fiber optic cable, making an opening in the cable for access, pre-terminating pre-selected optical fibers, optically connecting the pre-selected optical fibers with optical fibers of a tether cable, and encapsulating at least a portion of the cable access location within a flexible overmolded body.
摘要:
A cable assembly comprising a first fiber optic cable, a second fiber optic cable attached to the first fiber optic cable, and an apparatus for remotely releasing at least a portion of the second fiber optic cable from attachment to the first fiber optic cable. A cable assembly comprising a distribution cable, a tether cable attached and optically interconnected to the distribution cable at a first position, and removably attached to the distribution cable at one or more second positions, and a tether cable release apparatus for remotely releasing at least a portion of the tether cable from the distribution cable to allow the tether and a tethered assembly to be pulled to a predetermined location within a network.
摘要:
A fiber optic distribution cable assembly includes a distribution cable having at least one predetermined mid-span access location and a tether for mitigating cable length errors at the mid-span access location in a pre-engineered fiber optic communications network. At least one optical fiber of the distribution cable is accessed at the mid-span access location and optically connected to an optical fiber disposed within the tether. Preferably, the first end of the tether is attached to the distribution cable by overmolding the mid-span access location with a flexible encapsulant material. The end of the optical fiber of the tether may be splice-ready or connectorized at the second end of the tether and protected within a crush resistant tube. Alternatively, the second end of the tether may terminate in an optical connection terminal defining at least one optical connection node, or may terminate in a linear chain of articulated optical connection nodes.
摘要:
A factory-prepared preterminated and pre-connectorized fiber optic distribution cable having at least one mid-span access location for providing access to a plurality of preterminated optical fibers pre-connectorized with a multi-fiber connector is provided. Also provided is a method of forming a pre-connectorized fiber optic distribution cable by terminating and pre-connectorizing a predetermined number of the plurality of optical fibers of the cable to create a pre-connectorized mid-span access location. The fiber optic distribution cable provides a low profile mid-span access location that is sufficiently flexible to be installed through relatively small-diameter buried conduits and over aerial installation sheave wheels and pulleys without violating the minimum bend radius of the cable or the optical fibers. A protective encapsulant protects and seals the mid-span access location during cable reeling, unreeling, installation and until the access location is needed for interconnecting a connectorized fiber optic drop or branch cable.
摘要:
A fiber optic cable assembly comprising a first fiber optic cable having pre-selected optical fibers pre-terminated and branched at a cable access point, a second cable optically connected to the pre-terminated optical fibers, and a flexible body encapsulating the cable access point. A method for manufacturing a fiber optic cable assembly comprising providing a fiber optic cable, making an opening in the cable for access, pre-terminating pre-selected optical fibers, optically connecting the pre-selected optical fibers with optical fibers of a tether cable, and encapsulating at least a portion of the cable access location within a flexible overmolded body.
摘要:
Flexible closures and other flexible optical assemblies that are installed within a factory, or in the field, and then deployed using cable installation methods, wherein the flexible closures and assemblies have the ability to bend and twist without incurring physical damage to their structure, optical fibers and splices disposed within, and without significant attenuation in the optical fibers when exposed to conventional installation stresses. Flexible closures that replace conventional substantially rigid closures in order to facilitate pre-engineered and assembled distribution cable installation within an optical network, and the physical, bending and material properties of such closures, and methods of manufacturing and installing the same.
摘要:
An adjustable tether assembly for a fiber optic distribution cable includes a tether cable and an overmolded housing secured at the end of the tether cable having at least one connector port. The tether assembly is attached to the distribution cable such that the position of the connector port is adjustable along the length of the distribution cable for mitigating differences between the pre-engineered span length distance and the actual span length distance following installation of the distribution cable. A method for mitigating a span length measurement difference in a pre-engineered fiber optic communications network is provided that includes optically connecting an adjustable tether assembly at a mid-span access location of a fiber optic distribution cable and positioning a housing secured at the free end of a tether cable having at least one connector port at a desired location in the network to compensate for the span length measurement difference.