摘要:
A receiving node of a first wireless communications system is co-located with a node of a second wireless communications system, said first and second wireless communications systems are configured with frequencies on a shared frequency band. Information identifying a node of the first wireless communications system transmitting on the shared frequency band is received. The received information identifying the transmitting node as an interfering node to the co-located node of the second wireless communications system is transmitted to an entity controlling configuration of the shared frequency band.
摘要:
A receiving node of a first wireless communications system is co-located with a node of a second wireless communications system, said first and second wireless communications systems are configured with frequencies on a shared frequency band. Information identifying a node of the first wireless communications system transmitting on the shared frequency band is received. The received information identifying the transmitting node as an interfering node to the co-located node of the second wireless communications system is transmitted to an entity controlling configuration of the shared frequency band.
摘要:
The present invention provides a novel antibody-RNase conjugate which is a single chain protein, providing both the specificity of its antibody portion and the RNase activity of its RNase portion, resulting in an antigen specific effectiveness against cells when applied in vivo or in vitro, wherein the RNase portion is effectively cytotoxic in at least a fraction of cells presenting the antigen, e.g. after internalization by endocytosis. In detail, the present invention provides scAb-RNase conjugate having the principal structure of scFvFc-RNase. This structure could also be shown to allow the effective production of antigen-specific and cytotoxic conjugate protein in cell culture, the conjugate having a high activity with respect to antigen specificity and cyto toxicity.
摘要:
For a communication system (e.g. UMTS with CDMA radio interface), the invention draws a distinction between services with high and low data rate dynamics and uses a matched type of signaling for the transport formats currently being used. The data rate of the data for a service can fluctuate greatly and/or rapidly over time (high dynamics), or may fluctuate only a little and/or slowly (low dynamics). The data for the services are transmitted via a common physical channel, with in-band signaling being used for signaling the transport format for the services with high data rate dynamics, and with signaling in a separate channel being used for the services with low data rate dynamics.
摘要:
In methods for signal transmission, a first radio burst is inventively transmitted in a time slot of the radio interface, in which a transmission-side synchronization of the transmission of the first radio burst occurs, so that the first radio burst arrives at the receiving radio station at a predetermined point in time within the time slot. At least one second radio burst that can be interpreted separately from the first radio burst is transmitted in the same time slot. The invention can be utilized for designing the access method (random access) in packet data services (GPRS) of the GSM mobile radio telephone system or in a TDD transmission mode of the third mobile radio telephone generation. This method may also be used to transmit many very short messages.
摘要:
A method establishes a connection between a source network with a source network resource manager and a target network with a target network resource manager. According to the method, a connection control unit of the source network transmits a connection establishment signal to a connection control unit of the target network and—parallel to this—a reservation request to the target network resource manager. The target network resource reserves the requested resources and forwards the reservation request towards the target network resource manager, which also reserves the requested resources and transmits reservation information regarding the success of the resource reservations to the connection control unit of the target network.
摘要:
The subject matter of the invention proceeds from an encryption of the information for the radio transmission in an access network (ACN) as well as an authentication in at least one core network (CON1, CON2). Inventively, public keys (PUK1-MT, PUK-BS) are mutually transmitted between a mobile station (MT) and the base station (BS) via the radio interface (AI), and the public key (PUK1-MT or PUK-BS) received by the base station (BS) or mobile station (MT) is employed for the encryption of the information to be subsequently sent via the radio interface. On the basis of a private key (PRK1-MT, PRK1-BS) that is allocated to the transmitted, public key (PUK1-MT, PUK-BS) in the mobile station (MT) or in the base station (BS), the encrypted information received by the mobile station or base station can be deciphered. Following the encryption procedure, a subscriber identity mobile card (SIM) of the mobile station implements the authentication of the respective core network (CON1, CON2), and authentication equipment (AC, AC′) of the core network implements the authentication of the subscriber on the basis of the mutually transmitted, encrypted information.
摘要:
In order to call mobile'stations, mobile stations are, according to the invention, allocated to time slots for calling on the basis of subscriber-specific profiles. The number of time slots allocated for calling within a macroframe can be set individually for the mobile, stations. The requirement for time slots allocated for calling is thus covered individually for each mobile station. For time-critical applications, shorter delay times can be achieved using the method according to the invention.
摘要:
A method and system for configuring a radio interface between a mobile station and a base station in a time-division multiplex mobile radio system for packet data transmission, wherein time slots for signalling are allocated by the base station to the mobile stations in accordance with a sequence which can be predetermined, independent of packet data transmission. The time for configuration of the radio interface also can be reduced by a plurality of time slots for signalling being combined to form a signalling block, or the signalling to a plurality of mobile stations being carried out within one time slot. This signalling is used to define and set the timing advance.
摘要:
In a method for transmitting data via a radio interface between base stations and subscriber stations in a radio communications system, the time slots in a frame are allocated to different base stations such that the base stations transmit exclusively in the time slots in the downlink direction which are allocated to them, but also receive in those time slots in the uplink direction which are not allocated to them. It is thus possible to combine the received signals from at least two base stations with one another. Without any significant additional complexity, the existing base stations, which are on standby during some time slots, can be used to provide a macrodiversity reception. The transmission quality is improved by the plurality of propagation paths which are evaluated in the uplink direction. A radio communications system is also provided.